Evaluating perturbations and developing restoration strategies for inland wetlands in the Great Lakes basin
Wetland coverage and type distributions vary systematically by ecoregion across the Great Lakes Basin. Land use and subsequent changes in wetland type distributions also vary among ecoregions. Incidence of wetland disturbance varies significantly within ecoregions but tends to increase from north to...
Gespeichert in:
Veröffentlicht in: | Wetlands (Wilmington, N.C.) N.C.), 1999-12, Vol.19 (4), p.789-820 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Wetland coverage and type distributions vary systematically by ecoregion across the Great Lakes Basin. Land use and subsequent changes in wetland type distributions also vary among ecoregions. Incidence of wetland disturbance varies significantly within ecoregions but tends to increase from north to south with intensity of land use. Although the nature of disturbance activities varies by predominant land-use type, mechanisms of impact and potential response endpoints appear to be similar across agricultural and urban areas. Based on the proportion of associated disturbance activities and proportion response endpoints affected, the highest ranking mechanisms of impact are sedimentation/turbidity, retention time, eutrophication, and changes in hydrologic timing. Disturbance activities here are defined as events that cause wetland structure or function to vary outside of a normal range, while stressors represent the individual internal or external agents (causes) that act singly or in combination to impair one or more wetland functions. Responses most likely associated with disturbance activities based on shared mechanisms of impact are 1) shifts in plant species composition, 2) reduction in wildlife production, 3) decreased local or regional biodiversity, 4) reduction in fish and/or other secondary production, 5) increased flood peaks/frequency, 6) increased aboveground production, 7) decreased water quality downstream, and 8) loss of aquatic plant species with high light compensation points. General strategies and goals for wetland restoration can be derived at the ecoregion scale using information on current and historic wetland extent and type distributions and the distribution of special-concern species dependent on specific wetland types or mosaics of habitat types. Restoration of flood-control and water-quality improvement functions will require estimates of wetland coverage relative to total land area or specific land uses (e.g., deforestation, urbanization) at the watershed scale. The high incidence of disturbance activities in the more developed southern ecoregions of both Canada and the U.S. is reflected in the loss of species across all wetland types. The species data here suggest that an effective regional strategy must include restoration of a diversity of wetland types, including the rarer wetland types (wet meadows, fens), as well as forested swamps, which were extensive historically. The prevalence of anthropogenic stresses and openwater habi |
---|---|
ISSN: | 0277-5212 1943-6246 |
DOI: | 10.1007/BF03161785 |