Mechanism of the Initial Tubulin Nucleation Phase

Tubulin nucleation is a highly frequent event in microtubule (MT) dynamics but is poorly understood. In this work, we characterized the structural changes during the initial nucleation phase of dynamic tubulin. Using size-exclusion chromatography-eluted tubulin dimers in an assembly buffer solution...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry letters 2022-10, Vol.13 (41), p.9725-9735
Hauptverfasser: Shemesh, Asaf, Dharan, Nadiv, Ginsburg, Avi, Dharan, Raviv, Levi-Kalisman, Yael, Ringel, Israel, Raviv, Uri
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Tubulin nucleation is a highly frequent event in microtubule (MT) dynamics but is poorly understood. In this work, we characterized the structural changes during the initial nucleation phase of dynamic tubulin. Using size-exclusion chromatography-eluted tubulin dimers in an assembly buffer solution free of glycerol and tubulin aggregates enabled us to start from a well-defined initial thermodynamic ensemble of isolated dynamic tubulin dimers and short oligomers. Following a temperature increase, time-resolved X-ray scattering and cryo-transmission electron microscopy during the initial nucleation phase revealed an isodesmic assembly mechanism of one-dimensional (1D) tubulin oligomers (where dimers were added and/or removed one at a time), leading to sufficiently stable two-dimensional (2D) dynamic nanostructures, required for MT assembly. A substantial amount of tubulin octamers accumulated before two-dimensional lattices appeared. Under subcritical assembly conditions, we observed a slower isodesmic assembly mechanism, but the concentration of 1D oligomers was insufficient to form the multistranded 2D nucleus required for MT formation.
ISSN:1948-7185
1948-7185
DOI:10.1021/acs.jpclett.2c02619