Polarization meta-converter for dynamic polarization states shifting with broadband characteristic
Polarization, as an important property of light, has been widely discussed in modern detecting and radar systems. A polarization converter that can be used to achieve dynamic control is regarded as an excellent alternative for implementing the integrated functionalities of communication and stealth....
Gespeichert in:
Veröffentlicht in: | Optics express 2022-05, Vol.30 (11), p.20014-20025 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Polarization, as an important property of light, has been widely discussed in modern detecting and radar systems. A polarization converter that can be used to achieve dynamic control is regarded as an excellent alternative for implementing the integrated functionalities of communication and stealth. In this work, we propose a paradigm of meta-converter for dynamic polarization states shifting from linear-to-linear (LTL) to linear-to-circular (LTC) polarization. The strategy is achieved by loading voltage-controlled PIN diodes on the double-arrows metallic meta-resonators. The operation modes can be switched by changing the bias voltage. When the PIN diodes are turned on, the polarization meta-converter (PMC) will reflect and convert a linearly polarized electromagnetic (EM) wave into a circularly polarized one in 5.6–15.5 GHz with an axial ratio (AR) below 3dB. When the PIN diodes are turned off, the PMC will reflect and convert a linearly polarized EM wave into the orthogonal counterpart in 7.6–15.5 GHz with a polarization conversion ratio (PCR) over 88%. Simulations and experimental results show a good agreement, which manifests the feasibility of our proposed meta-converter. Moreover, the proposed PMC has great potential for polarization-dependent communication and stealth systems. |
---|---|
ISSN: | 1094-4087 1094-4087 |
DOI: | 10.1364/OE.453691 |