Mechanistic insights into aggregation process of graphene oxide and bacterial cells in microbial reduction of ferrihydrite

Microbial reduction of ferrihydrite is prevalent in natural environments and plays an important role in reductive dissolution of Fe(III) minerals. With consistent release of anthropogenic graphene oxide (GO) into water bodies, new changes in the Fe(III)-reducing microorganisms/ferrihydrite binary sy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Science of the total environment 2023-01, Vol.857, p.159321-159321, Article 159321
Hauptverfasser: Han, Kaixin, Zeng, Yibo, Lu, Yinghua, Meng, Shujuan, Hong, Yanzhen, Shen, Liang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Microbial reduction of ferrihydrite is prevalent in natural environments and plays an important role in reductive dissolution of Fe(III) minerals. With consistent release of anthropogenic graphene oxide (GO) into water bodies, new changes in the Fe(III)-reducing microorganisms/ferrihydrite binary system demand attention. Herein, we focused on the interaction of GO and bacterial cells in view of colloidal stability and interfacial forces, and on the consequences for microbial ferrihydrite reduction. The results showed that the addition of GO decreased the bioreduction efficiency of ferrihydrite down to 1/15 of the control. Meanwhile, the GO nanosheets were found not depositing on ferrihydrite but spontaneously aggregating with Shewanella spp., the representative dissimilatory Fe(III) reduction bacterial species. Using the extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory and atomic force microscopy (AFM), the aggregation process can be interpreted in three steps according to the interaction energy calculation, namely, colloidal instability, reversible aggregation and irreversible aggregation. The motility of living cells seems the reason inducing the colloidal instability between GO and bacteria. While, the aggregation remains reversible even the secondary minimum achieved at the separation distance of 8.74–9.24 nm from XDLVO. When the separation distance
ISSN:0048-9697
1879-1026
DOI:10.1016/j.scitotenv.2022.159321