Nagging: A Distributed, Adversarial Search-Pruning Technique Applied to First-Order Inference

This article introduces a parallel search-pruning technique callednagging. Nagging is sufficiently general to be effective in a number ofdomains; here we focus on an implementation for first-order theorem proving,a domain both responsive to a very simple nagging model and amenable to manyrefinements...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of automated reasoning 1997-12, Vol.19 (3), p.347-376
Hauptverfasser: Sturgill, David, Segre, Alberto Maria
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This article introduces a parallel search-pruning technique callednagging. Nagging is sufficiently general to be effective in a number ofdomains; here we focus on an implementation for first-order theorem proving,a domain both responsive to a very simple nagging model and amenable to manyrefinements of this model. Nagging's scalability and intrinsic faulttolerance make it particularly suitable for application in commonlyavailable, low-bandwidth, high-latency distributed environments. We presentseveral nagging models of increasing sophistication, demonstrate theireffectiveness empirically, and compare nagging with related work in parallelsearch.[PUBLICATION ABSTRACT]
ISSN:0168-7433
1573-0670
DOI:10.1023/A:1005885725562