Discovery of DNA polymorphisms via genome-resequencing and development of molecular markers between two barley cultivars

Key message Genome resequencing uncovers genome-wide DNA polymorphisms that are useful for the development of high-density InDel markers between two barley cultivars. Discovering genomic variations and developing genetic markers are crucial for genetics studies and molecular breeding in cereal crops...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant cell reports 2022-12, Vol.41 (12), p.2279-2292
Hauptverfasser: Zhang, Yueya, Shi, Jin, Shen, Chaoqun, To, Vinh-Trieu, Shi, Qi, Ye, Lingzhen, Shi, Jianxin, Zhang, Dabing, Chen, Weiwei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Key message Genome resequencing uncovers genome-wide DNA polymorphisms that are useful for the development of high-density InDel markers between two barley cultivars. Discovering genomic variations and developing genetic markers are crucial for genetics studies and molecular breeding in cereal crops. Although InDels (insertions and deletions) have become popular because of their abundance and ease of detection, discovery of genome-wide DNA polymorphisms and development of InDel markers in barley have lagged behind other cereal crops such as rice, maize and wheat. In this study, we re-sequenced two barley cultivars, Golden Promise (GP, a classic British spring barley variety) and Hua30 (a Chinese spring barley variety), and mapped clean reads to the reference Morex genome, and identified in total 13,933,145 single nucleotide polymorphisms (SNPs) and 1,240,456 InDels for GP with Morex, 11,297,100 SNPs and 781,687 InDels for Hua30 with Morex, and 13,742,399 SNPs and 1,191,597 InDels for GP with Hua30. We further characterized distinct types, chromosomal distribution patterns, genome location, functional effect, and other features of these DNA polymorphisms. Additionally, we revealed the functional relevance of these identified SNPs/InDels regarding different flowering times between Hua30 and GP within 17 flowering time genes. Furthermore, we developed a series of InDel markers and validated them experimentally in 43 barley core accessions, respectively. Finally, we rebuilt population structure and phylogenetic tree of these 43 barley core accessions. Collectively, all of these genetic resources will facilitate not only the basic research but also applied research in barley.
ISSN:0721-7714
1432-203X
DOI:10.1007/s00299-022-02920-8