Mutations Associated with Pyrazinamide Resistance in Mycobacterium tuberculosis: A Review and Update
Pyrazinamide (PZA) has remained a keystone of tuberculosis (TB) therapy, and it possesses high imperative sterilizing action that can facilitate reduction in the present chemotherapy regimen. The combination of PZA works both with first- and second-line TB drugs, notably fluoroquinolones, clofazimin...
Gespeichert in:
Veröffentlicht in: | Current microbiology 2022-11, Vol.79 (11), p.348-348, Article 348 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Pyrazinamide (PZA) has remained a keystone of tuberculosis (TB) therapy, and it possesses high imperative sterilizing action that can facilitate reduction in the present chemotherapy regimen. The combination of PZA works both with first- and second-line TB drugs, notably fluoroquinolones, clofazimine, bedaquiline, delamanid and pretomanid. Pyrazinamide inhibits various targets that are involved in different cellular processes like energy production (
pncA
), trans-translation (
rpsA
) and pantothenate/coenzyme A (
panD
) which are required for persistence of the pathogen. It is well known that
pncA
gene encoding pyrazinamidase is involved in the transition of PZA into the active form of pyrazinoic acid, which implies that mutation in the
pncA
gene can develop PZA resistance in
Mycobacterium tuberculosis
(
M
.
tuberculosis
) strain leading to a major clinical and public health concern. Therefore, it is very crucial to understand its resistance mechanism and to detect it precisely to help in the management of the disease. Scope of this review is to have a deep understanding of molecular mechanism of PZA resistance with its multiple targets which would help study the association of mutations and its resistance in
M
.
tuberculosis.
This will in turn help learn about the resistance of PZA and develop more accurate molecular diagnostic tool for drug-resistant TB in future TB therapy. |
---|---|
ISSN: | 0343-8651 1432-0991 |
DOI: | 10.1007/s00284-022-03032-y |