Potential of Deep Learning in Quantitative Magnetic Resonance Imaging for Personalized Radiotherapy

Quantitative magnetic resonance imaging (qMRI) has been shown to provide many potential advantages for personalized adaptive radiotherapy (RT). Deep learning models have proven to increase efficiency, robustness and speed for different qMRI tasks. Therefore, this article discusses the current state-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Seminars in radiation oncology 2022-10, Vol.32 (4), p.377-388
Hauptverfasser: Gurney-Champion, Oliver J., Landry, Guillaume, Redalen, Kathrine Røe, Thorwarth, Daniela
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Quantitative magnetic resonance imaging (qMRI) has been shown to provide many potential advantages for personalized adaptive radiotherapy (RT). Deep learning models have proven to increase efficiency, robustness and speed for different qMRI tasks. Therefore, this article discusses the current state-of-the-art and potential future opportunities as well as challenges related to the use of deep learning in qMRI for target contouring, quantitative parameter estimation and also the generation of synthetic computerized tomography (CT) data based on MRI in personalized RT.
ISSN:1053-4296
1532-9461
DOI:10.1016/j.semradonc.2022.06.007