Synthesis of tetrahedron DNA nanostructures for detecting the activation of cell signal transduction via their specific binding to transcriptional factors

A technique for detecting the activation of cell signal transduction is particularly important for disease diagnosis and therapy. Transcriptional factor (TF) activities that could indicate the status of cell signal transduction are a favorable target for cell signal detection. Tetrahedron DNA nanost...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanoscale 2022-10, Vol.14 (40), p.15101-15110
Hauptverfasser: Zhang, Ying, Chen, Yue, Wu, Bing, Liu, Danqing, Fu, Lengxi, Huang, Fei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A technique for detecting the activation of cell signal transduction is particularly important for disease diagnosis and therapy. Transcriptional factor (TF) activities that could indicate the status of cell signal transduction are a favorable target for cell signal detection. Tetrahedron DNA nanostructures (TDNs) which contain specific binding sequences of TFs were designed and synthesized in this research, and their effects on detecting cell signal transduction were evaluated. We found that FAM-labeled TDNs with the indicated TF binding sequences could specifically bind to activated TFs of hypoxia signaling or TGF-β signaling. Signaling pathway activities detected via TDNs could be exhibited by various methods including fluorescence imaging, flow cytometry and fluorescence spectrometer analysis. The reliability of this new technique is in line with the classical dual luciferase reporter assay system. This work develops a novel and effective tool to examine the activation of intracellular signaling pathways via nanotechnology. In addition, good stability and programmability of TDNs ensure their widespread application in various signaling pathways.
ISSN:2040-3364
2040-3372
DOI:10.1039/d2nr01954j