The interactions between Reactive Black 5 and human serum albumin: combined spectroscopic and molecular dynamics simulation approaches
Azo dyes are made in significant amounts annually and released into the environment after being employed in the industry. There are some reports about the toxic effects of these dyes on several organisms. Thus, the textile dye Reactive Black 5 (RB5) has been examined for its cytotoxic effects on the...
Gespeichert in:
Veröffentlicht in: | Environmental science and pollution research international 2022-10, Vol.29 (46), p.70114-70124 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Azo dyes are made in significant amounts annually and released into the environment after being employed in the industry. There are some reports about the toxic effects of these dyes on several organisms. Thus, the textile dye Reactive Black 5 (RB5) has been examined for its cytotoxic effects on the human serum albumin (HSA) structure. Molecular interaction between RB5 and HSA indicated the combination of docking methods, molecular dynamic simulation, and multi-spectroscopic approaches. HSA’s intrinsic fluorescence was well quenched with enhancing RB5 level, confirming complex formation. Molecular dynamics (MD) simulation was done to study the cytotoxic effects of RB5 and HSA conformation. Molecular modeling revealed that the RB5-HSA complex was stabilized by hydrogen bonds and van der Waals interactions. The results of molecular docking revealed that the binding energy of RB5 to HSA was − 27.94 kJ/mol. The change in secondary structure causes the annihilation of hydrogen bonding networks and the reduction of biological activity. This research can indicate a suitable molecular modeling interaction of RB5 and HAS and broaden our knowledge for azo dye toxicity under natural conditions. |
---|---|
ISSN: | 0944-1344 1614-7499 |
DOI: | 10.1007/s11356-022-20736-7 |