RILEM interlaboratory study on the mechanical properties of asphalt mixtures modified with polyethylene waste

This research aims to determine if the observed improvements using polyethylene (PE) waste in asphalt binder translate into better performance at the asphalt mixture scale in the laboratory environment while overcoming the stability and homogeneity issues experienced at the binder level. This is acc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of cleaner production 2022-11, Vol.375, p.134124, Article 134124
Hauptverfasser: Poulikakos, Lily D., Pasquini, Emiliano, Tusar, Marjan, Hernando, David, Wang, Di, Mikhailenko, Peter, Pasetto, Marco, Baliello, Andrea, Cannone Falchetto, Augusto, Miljković, Miomir, Orešković, Marko, Viscione, Nunzio, Saboo, Nikhil, Orozco, Gabriel, Lachance-Tremblay, Éric, Vaillancourt, Michel, Kakar, Muhammad Rafiq, Bueche, Nicolas, Stoop, Jan, Wouters, Lacy, Dalmazzo, Davide, Pinheiro, Gustavo, Vasconcelos, Kamilla, Moreno Navarro, Fernando
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This research aims to determine if the observed improvements using polyethylene (PE) waste in asphalt binder translate into better performance at the asphalt mixture scale in the laboratory environment while overcoming the stability and homogeneity issues experienced at the binder level. This is accomplished through a round-robin multinational experimental program covering four continents, with the active participation of eleven laboratories within the RILEM TC 279-WMR. PE modified AC16 mixtures were prepared employing the dry process using local materials with the PE waste provided by one source. Various mechanical tests were performed to investigate the compactability, strength, moisture sensitivity, stiffness and permanent deformation. Compared to the control mixtures, the following observations were made for PE modified mixtures: easier to compact, lower time dependence of stiffness, higher elastic behavior, lower creep rate, and higher creep modulus. Furthermore, cyclic compression test results showed that the resistance to permanent deformation is improved when using PE in asphalt mixtures, whereas the wheel tracking tests showed relatively similar or better results when 1.5% PE was added to the control mixture. The wheel tracking test results in water showed an increase in deformation with increasing PE content. The interlaboratory investigation showed that the use of PE as a performance-enhancing additive in asphalt pavements is a viable, environmentally friendly option for recycling waste plastic and could potentially reduce the use of polymer additives in asphalt. •PE does not melt completely during the laboratory fabrication of asphalt concrete.•PE modified mixtures were not more sensitive to water.•Stiffness of the PE modified mixtures tends to increase for higher percentages of PE.•PE modified mixture demonstrates higher elastic behavior than the reference mixture.•PE modified mixtures showed lower creep rate and higher creep modulus.
ISSN:0959-6526
1879-1786
DOI:10.1016/j.jclepro.2022.134124