Radial growth response of Pinus sylvestris L. and Fagus sylvatica L. to technological solutions applied in rope climbing parks

Vitality is a genetic preservation factor that keeps a tree in the right condition. Changes in tree vitality are a measure of the impact exerted on trees by environmental factors, such as injuries to trunks and branches, and are among the basic parameters of the state of their preservation. The dyna...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Dendrochronologia (Verona) 2022-12, Vol.76, p.126000, Article 126000
Hauptverfasser: Kraj, Wojciech, Szewczyk, Grzegorz, Zarek, Marcin, Wąsik, Radosław, Bednarz, Bartłomiej
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Vitality is a genetic preservation factor that keeps a tree in the right condition. Changes in tree vitality are a measure of the impact exerted on trees by environmental factors, such as injuries to trunks and branches, and are among the basic parameters of the state of their preservation. The dynamics of changes in the width of annual increments of trees is one of several parameters characterizing the level of their vitality. The aim of the study is to determine changes in radial increment and linking them to the level of the vitality of Scots pines (Pinus sylvestris L.) and European beeches (Fagus sylvatica L.), on which the standard (old system) and specially designed (new system) systems of fastening of wooden platforms were installed as part of adventure park infrastructure. In the old system, the platforms were installed on square wooden beams placed in milled tree trunks, while in the new system on semi-circular metal brackets matching the curvature of the trunks. The present research is aimed to determine the dynamics of incremental trends in trees with different platform systems in relation to the reference group, and to determine the impact of the tested support systems on trees with different levels of vitality. Most of the studied trees were in the optimum stage of increment. The initial tree vitality level recorded at the beginning of the experiment was clearly better for the beech stands. In the case of Scots pine, the average vitality was close to stable. Pines that were initially in better condition responded much worse to the installation of old system platforms compared to those with the specially new platform system. A similar trend was also visible in the case of beeches, but the differences were not that clear and the annual increments of the trees with platforms installed were slightly higher compared to the reference trees. The trees that were initially in worse condition, both pines and beeches on which the old system of platforms had been installed, responded by increasing the width of annual increments during the measurement period. The described response of trees most probably does not result from the lower harmfulness of the old support system, but from the defensive responses of trees subjected to stronger stress.
ISSN:1125-7865
1612-0051
DOI:10.1016/j.dendro.2022.126000