Deep‐learning model associating lateral cervical radiographic features with Cormack–Lehane grade 3 or 4 glottic view

Summary Unanticipated difficult laryngoscopy is associated with serious airway‐related complications. We aimed to develop and test a convolutional neural network‐based deep‐learning model that uses lateral cervical spine radiographs to predict Cormack–Lehane grade 3 or 4 direct laryngoscopy views of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Anaesthesia 2023-01, Vol.78 (1), p.64-72
Hauptverfasser: Cho, H.‐Y., Lee, K., Kong, H.‐J., Yang, H.‐L., Jung, C.‐W., Park, H.‐P., Hwang, J. Y., Lee, H.‐C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Summary Unanticipated difficult laryngoscopy is associated with serious airway‐related complications. We aimed to develop and test a convolutional neural network‐based deep‐learning model that uses lateral cervical spine radiographs to predict Cormack–Lehane grade 3 or 4 direct laryngoscopy views of the glottis. We analysed the radiographs of 5939 thyroid surgery patients at our hospital, 253 (4%) of whom had grade 3 or 4 glottic views. We used 10 randomly sampled datasets to train a model. We compared the new model with six similar models (VGG, ResNet, Xception, ResNext, DenseNet and SENet). The Brier score (95%CI) of the new model, 0.023 (0.021–0.025), was lower (‘better’) than the other models: VGG, 0.034 (0.034–0.035); ResNet, 0.033 (0.033–0.035); Xception, 0.032 (0.031–0.033); ResNext, 0.033 (0.032–0.033); DenseNet, 0.030 (0.029–0.032); SENet, 0.031 (0.029–0.032), all p 
ISSN:0003-2409
1365-2044
DOI:10.1111/anae.15874