Dual-mode biosensing platform for sensitive and portable detection of hydrogen sulfide based on cuprous oxide/gold/copper metal organic framework heterojunction

[Display omitted] Hydrogen sulfide (H2S) can not only be regarded as a critical gas signal transduction substance, but also its excess levels can lead to a range of diseases. Currently, the accurate analysis combined with electrochemical (EC) or photothermal (PT) technology for H2S in a complex biol...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of colloid and interface science 2023-01, Vol.629 (Pt B), p.796-804
Hauptverfasser: Shang, Hongyuan, Ding, Meili, Zhang, Xiaofei, Zhang, Wen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:[Display omitted] Hydrogen sulfide (H2S) can not only be regarded as a critical gas signal transduction substance, but also its excess levels can lead to a range of diseases. Currently, the accurate analysis combined with electrochemical (EC) or photothermal (PT) technology for H2S in a complex biological system remains a significant challenge. Herein, an endogenous H2S-triggered heterojunction cuprous oxide/gold/copper metal organic framework (Cu2O/Au/HKUST-1) nanoprobe is designed for dual-mode EC- second near-infrared (NIR-II)/PT analysis in tumor cells with high sensitivity and simplicity. Dual-mode EC quantification - PT is achieved through “off–on” mode of EC and PT signals based on electronic transfer and biosynthesis via an in situ sulfuration reaction. Under the optimum conditions, the EC quantification mode for trace H2S exhibits a wide linear range and an excellent limit of detection of 0.1 μM. More importantly, the dual-mode can display the selective detection of trace H2S in living tumor cells because of the specific interaction between copper ion and H2S. These results provide a new EC-PT promising biosensing platform for noninvasive intelligent detection of H2S in living tumor cells.
ISSN:0021-9797
1095-7103
1095-7103
DOI:10.1016/j.jcis.2022.09.120