Predictive validity in drug discovery: what it is, why it matters and how to improve it
Successful drug discovery is like finding oases of safety and efficacy in chemical and biological deserts. Screens in disease models, and other decision tools used in drug research and development (R&D), point towards oases when they score therapeutic candidates in a way that correlates with cli...
Gespeichert in:
Veröffentlicht in: | Nature reviews. Drug discovery 2022-12, Vol.21 (12), p.915-931 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Successful drug discovery is like finding oases of safety and efficacy in chemical and biological deserts. Screens in disease models, and other decision tools used in drug research and development (R&D), point towards oases when they score therapeutic candidates in a way that correlates with clinical utility in humans. Otherwise, they probably lead in the wrong direction. This line of thought can be quantified by using decision theory, in which ‘predictive validity’ is the correlation coefficient between the output of a decision tool and clinical utility across therapeutic candidates. Analyses based on this approach reveal that the detectability of good candidates is extremely sensitive to predictive validity, because the deserts are big and oases small. Both history and decision theory suggest that predictive validity is under-managed in drug R&D, not least because it is so hard to measure before projects succeed or fail later in the process. This article explains the influence of predictive validity on R&D productivity and discusses methods to evaluate and improve it, with the aim of supporting the application of more effective decision tools and catalysing investment in their creation.
The ‘predictive validity’ of decision tools such as disease models that are used in drug research and development (R&D) — the degree to which the output from a tool correlates with clinical utility in people — has a major influence on R&D productivity. This article explains this influence and discusses methods to evaluate and improve the predictive validity of decision tools, with the aim of supporting the application of more effective tools and catalysing investment in their creation. |
---|---|
ISSN: | 1474-1776 1474-1784 |
DOI: | 10.1038/s41573-022-00552-x |