Enantiomer-Specific Study of Fenpropathrin in Soil-Earthworm Microcosms: Enantioselective Bioactivity, Bioaccumulation, and Toxicity

In this study, the enantiomer-specific bioactivity, bioaccumulation, and toxicity of fenpropathrin (FEN) enantiomers were investigated in soil-earthworm microcosms. The bioactivity order was S-FEN > rac-FEN > R-FEN for Spodoptera litura and Conogethes punctiferalis. Moreover, S-FEN was 12.0 an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of agricultural and food chemistry 2022-10, Vol.70 (41), p.13152-13164
Hauptverfasser: Zhang, Ping, Yang, Furong, Shi, Linlin, Yang, Cancan, Chen, Qi, Hu, Xueping, Zhang, Zan, Qian, Kun, Xu, Zhifeng, He, Lin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this study, the enantiomer-specific bioactivity, bioaccumulation, and toxicity of fenpropathrin (FEN) enantiomers were investigated in soil-earthworm microcosms. The bioactivity order was S-FEN > rac-FEN > R-FEN for Spodoptera litura and Conogethes punctiferalis. Moreover, S-FEN was 12.0 and 32.2 times more toxic than rac-FEN and R-FEN to earthworms, respectively. S-FEN degraded faster than R-FEN with the enrichment of R-FEN in the soil environment. Furthermore, the peak-shaped accumulation curves for FEN enantiomers were observed, and R-FEN was preferentially bioaccumulated by earthworms. As compared to R-FEN, S-FEN induced greater changes in the activities of detoxification enzymes, antioxidant enzymes, and malondialdehyde content, which suggested that earthworms exhibited enantioselective defense responses to S-FEN and R-FEN. Integrated biomarker response results indicated that S-FEN exhibited higher toxic effects on earthworms than R-FEN. Finally, molecular simulation revealed that the greater interaction forces between S-FEN and sodium channel protein could be the primary reason for the enantioselective bioactivity and toxicity of FEN enantiomers. This study comprehensively highlights the enantiomer-specific bioactivity, bioaccumulation, toxicity, and mechanism of FEN in soil-earthworm microcosms at the enantiomer level. Our findings will contribute to a better risk assessment of FEN in the soil ecosystem.
ISSN:0021-8561
1520-5118
DOI:10.1021/acs.jafc.2c04624