Discovery of 2‑Methyl-2-(4-(2-methyl-8-(1H‑pyrrolo[2,3‑b]pyridin-6-yl)‑1H‑naphtho[1,2‑d]imidazol-1-yl)phenyl)propanenitrile as a Novel PI3K/mTOR Inhibitor with Enhanced Antitumor Efficacy In Vitro and In Vivo
PI3K/Akt/mTOR signaling pathway is a validated drug target for cancer treatment that plays a critical role in controlling tumor growth, proliferation, and apoptosis. However, no FDA-approved PI3K/mTOR dual inhibitor exists. Thus, a candidate with a better curative effect and lower toxicity is still...
Gespeichert in:
Veröffentlicht in: | Journal of medicinal chemistry 2022-10, Vol.65 (19), p.12781-12801 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | PI3K/Akt/mTOR signaling pathway is a validated drug target for cancer treatment that plays a critical role in controlling tumor growth, proliferation, and apoptosis. However, no FDA-approved PI3K/mTOR dual inhibitor exists. Thus, a candidate with a better curative effect and lower toxicity is still urgently needed. Herein, we design, synthesize, and evaluate compounds belonging to a novel series of 2-methyl-1H-imidazo[4,5-c]quinoline scaffold derivatives as PI3K/mTOR dual inhibitors. Among them, compound 8o was identified as a novel candidate with excellent kinase selectivity. It manifested remarkable antiproliferative activities against SW620 and HeLa cells. Western blot and immunohistochemical analysis results proved that 8o could regulate the PI3K/AKT/mTOR signaling pathway by inhibiting the phosphorylation of AKT and S6 proteins. Additionally, 8o presented a favorable pharmacokinetic property (oral bioavailability of 76.8%) and significant antitumor efficacy in vivo without obvious toxicity. Collectively, these results indicated that 8o is a promising agent for cancer treatment and merits further development. |
---|---|
ISSN: | 0022-2623 1520-4804 |
DOI: | 10.1021/acs.jmedchem.2c00572 |