Persistence of N-oxides transformation products of tertiary amine drugs at lab and field studies
This work aimed at studying the formation and persistence of N-oxides transformation products (TPs) of tertiary amine drugs by combining laboratory and field studies relevant for surface water. A monitoring study using passive samplers was first achieved for assessing attenuation of selected pharmac...
Gespeichert in:
Veröffentlicht in: | Chemosphere (Oxford) 2022-12, Vol.309, p.136661-136661, Article 136661 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This work aimed at studying the formation and persistence of N-oxides transformation products (TPs) of tertiary amine drugs by combining laboratory and field studies relevant for surface water. A monitoring study using passive samplers was first achieved for assessing attenuation of selected pharmaceuticals and their related N-oxides and N-, O-dealkylated TPs (i.e., venlafaxine, tramadol, amisulpride and sulpiride) along a 1.7 km river stretch between two sampling sites. This study revealed the stability of tramadol-N-oxide, amisulpride-N-oxide and the fast dissipation of O-desmethylvenlafaxine-N-oxide, as well as the significance of N-oxidized TPs in comparison to N-dealkylated TPs and parent compounds in river. Lab-scale experiments were then implemented for a better understanding of their mechanisms of formation and degradation under aerobic water/sediment testing and under simulated solar photochemistry. N-oxidation reactions were always a minor transformation pathway under both degradation conditions with respect to N-and O-dealkylation reactions. The amount of generated N-oxides were similar for venlafaxine, tramadol and sulpiride and peaked in the 8.4–12.8% and |
---|---|
ISSN: | 0045-6535 1879-1298 |
DOI: | 10.1016/j.chemosphere.2022.136661 |