Multirate optical fast frequency hopping CDMA system using power control

This paper addresses the problem of real-time multimedia transmission in fiber-optic networks using code division multiple access (CDMA). We present a multirate optical fast frequency hopping CDMA (OFFH-CDMA) system architecture using fiber Bragg gratings (FBGs). In addition, we argue that, in multi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of lightwave technology 2002-02, Vol.20 (2), p.166-177
Hauptverfasser: Inaty, E., Shalaby, H.M.H., Fortier, P., Rusch, L.A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper addresses the problem of real-time multimedia transmission in fiber-optic networks using code division multiple access (CDMA). We present a multirate optical fast frequency hopping CDMA (OFFH-CDMA) system architecture using fiber Bragg gratings (FBGs). In addition, we argue that, in multimedia applications, different services have different quality of service (QoS) requirements; hence, the user only needs to use the minimum required power to transmit the signal, such that the required signal-to-interference ratio (SIR) is met. We show that a variable bit rate optical communication system with variable QoS can be implemented by way of power control with great efficiency. Present-day multirate optical CDMA systems concentrate on finding the code structure that supports a variable rate system, neglecting the importance of the transmission power of active users on the multiple access interference (MAI) and, therefore, on the system capacity. We assign different power levels to each rate through a power control algorithm using variable optical attenuators, which minimizes the interference and, at the same time, provides variable QoS constraints for different traffic types. Although we are using a code family that preserves good correlation properties between codes of different lengths, simulations show a great improvement in the system capacity when power control is used.
ISSN:0733-8724
1558-2213
DOI:10.1109/50.983229