Oxygen Evolution Activity of Amorphous Cobalt Oxyhydroxides: Interconnecting Precatalyst Reconstruction, Long‐Range Order, Buffer‐Binding, Morphology, Mass Transport, and Operation Temperature
Nanocrystalline or amorphous cobalt oxyhydroxides (CoCat) are promising electrocatalysts for the oxygen evolution reaction (OER). While having the same short‐range order, CoCat phases possess different electrocatalytic properties. This phenomenon is not conclusively understood, as multiple interdepe...
Gespeichert in:
Veröffentlicht in: | Advanced materials (Weinheim) 2022-12, Vol.34 (50), p.e2207494-n/a |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 50 |
container_start_page | e2207494 |
container_title | Advanced materials (Weinheim) |
container_volume | 34 |
creator | Hausmann, J. Niklas Mebs, Stefan Dau, Holger Driess, Matthias Menezes, Prashanth W. |
description | Nanocrystalline or amorphous cobalt oxyhydroxides (CoCat) are promising electrocatalysts for the oxygen evolution reaction (OER). While having the same short‐range order, CoCat phases possess different electrocatalytic properties. This phenomenon is not conclusively understood, as multiple interdependent parameters affect the OER activity simultaneously. Herein, a layered cobalt borophosphate precatalyst, Co(H2O)2[B2P2O8(OH)2]·H2O, is fully reconstructed into two different CoCat phases. In contrast to previous reports, this reconstruction is not initiated at the surface but at the electrode substrate to catalyst interface. Ex situ and in situ investigations of the two borophosphate derived CoCats, as well as the prominent CoPi and CoBi identify differences in the Tafel slope/range, buffer binding and content, long‐range order, number of accessible edge sites, redox activity, and morphology. Considering and interconnecting these aspects together with proton mass‐transport limitations, a comprehensive picture is provided explaining the different OER activities. The most decisive factors are the buffers used for reconstruction, the number of edge sites that are not inhibited by irreversibly bonded buffers, and the morphology. With this acquired knowledge, an optimized OER system is realized operating in near‐neutral potassium borate medium at 1.62 ± 0.03 VRHE yielding 250 mA cm−2 at 65 °C for 1 month without degrading performance.
Four different amorphous cobalt oxyhydroxides and two crystalline cobalt oxides are studied in situ to deduce the role of the reconstruction conditions, the effect of the electrolyte, and structure–activity relations for near‐neutral water oxidation. Multiple aspects are considered and interconnected, deducing a comprehensive concept for the different electrocatalytic performances, including mass transport. |
doi_str_mv | 10.1002/adma.202207494 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2720932124</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2754838991</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3434-873893602f8882cd893b717488221fdc3d85f015c5099a74003ba18b788e91b73</originalsourceid><addsrcrecordid>eNqFkcFu1DAQhi0EokvhyhFZ4sJhs9iOk9jc0qVApa0WVcs5cmwnTZXYwXZKc-MReCiehCfBu1uKxIWTZ-xv_hnPD8BLjFYYIfJWqEGsCCIEFZTTR2CBM4ITinj2GCwQT7OE55SdgGfe3yCEeI7yp-AkzTHjrEgX4Of2bm61gee3tp9CZw0sZehuuzBD28BysG68tpOHa1uLPsBIX8_K2btOaf8OXpignbTG6FhkWvjZaSmC6Gcf4JWODz64Se5ll3BjTfvr-48rYVoNt05pt4RnU9NoF2_POqOiwBJeHhr2tp1jLLyHOyeMH60LSyiMgttRO3GYc6eHQzw5_Rw8aUTv9Yv78xR8-XC-W39KNtuPF-tyk8iUpjSJH2Y8zRFpGGNEqpjUBS5oTAhulEwVyxqEM5khzkVBEUprgVldMKY5rov0FLw56o7Ofp20D9XQean7Xhgdl1SRgsSVE0xoRF__g97YyZk4XaQyyuIkHEdqdaSks9473VSj6wbh5gqjau9vtfe3evA3Fry6l53qQasH_I-hEeBH4FvX6_k_clX5_rL8K_4bkk-2kw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2754838991</pqid></control><display><type>article</type><title>Oxygen Evolution Activity of Amorphous Cobalt Oxyhydroxides: Interconnecting Precatalyst Reconstruction, Long‐Range Order, Buffer‐Binding, Morphology, Mass Transport, and Operation Temperature</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Hausmann, J. Niklas ; Mebs, Stefan ; Dau, Holger ; Driess, Matthias ; Menezes, Prashanth W.</creator><creatorcontrib>Hausmann, J. Niklas ; Mebs, Stefan ; Dau, Holger ; Driess, Matthias ; Menezes, Prashanth W.</creatorcontrib><description>Nanocrystalline or amorphous cobalt oxyhydroxides (CoCat) are promising electrocatalysts for the oxygen evolution reaction (OER). While having the same short‐range order, CoCat phases possess different electrocatalytic properties. This phenomenon is not conclusively understood, as multiple interdependent parameters affect the OER activity simultaneously. Herein, a layered cobalt borophosphate precatalyst, Co(H2O)2[B2P2O8(OH)2]·H2O, is fully reconstructed into two different CoCat phases. In contrast to previous reports, this reconstruction is not initiated at the surface but at the electrode substrate to catalyst interface. Ex situ and in situ investigations of the two borophosphate derived CoCats, as well as the prominent CoPi and CoBi identify differences in the Tafel slope/range, buffer binding and content, long‐range order, number of accessible edge sites, redox activity, and morphology. Considering and interconnecting these aspects together with proton mass‐transport limitations, a comprehensive picture is provided explaining the different OER activities. The most decisive factors are the buffers used for reconstruction, the number of edge sites that are not inhibited by irreversibly bonded buffers, and the morphology. With this acquired knowledge, an optimized OER system is realized operating in near‐neutral potassium borate medium at 1.62 ± 0.03 VRHE yielding 250 mA cm−2 at 65 °C for 1 month without degrading performance.
Four different amorphous cobalt oxyhydroxides and two crystalline cobalt oxides are studied in situ to deduce the role of the reconstruction conditions, the effect of the electrolyte, and structure–activity relations for near‐neutral water oxidation. Multiple aspects are considered and interconnected, deducing a comprehensive concept for the different electrocatalytic performances, including mass transport.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202207494</identifier><identifier>PMID: 36189873</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>(near‐)neutral oxygen evolution reaction ; Binding ; Buffers ; Cobalt ; cobalt borophosphate precatalysts ; cobalt oxyhydoxides ; edge sites ; Electrocatalysts ; Knowledge acquisition ; Mass transport ; Materials science ; Morphology ; Oxygen evolution reactions ; Performance degradation ; precatalyst reconstructions ; proton transport ; Reconstruction ; Substrates ; water oxidation</subject><ispartof>Advanced materials (Weinheim), 2022-12, Vol.34 (50), p.e2207494-n/a</ispartof><rights>2022 The Authors. Advanced Materials published by Wiley‐VCH GmbH</rights><rights>2022 The Authors. Advanced Materials published by Wiley-VCH GmbH.</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3434-873893602f8882cd893b717488221fdc3d85f015c5099a74003ba18b788e91b73</citedby><cites>FETCH-LOGICAL-c3434-873893602f8882cd893b717488221fdc3d85f015c5099a74003ba18b788e91b73</cites><orcidid>0000-0002-2336-3600 ; 0000-0002-9873-4103</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202207494$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202207494$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1416,27922,27923,45572,45573</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36189873$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hausmann, J. Niklas</creatorcontrib><creatorcontrib>Mebs, Stefan</creatorcontrib><creatorcontrib>Dau, Holger</creatorcontrib><creatorcontrib>Driess, Matthias</creatorcontrib><creatorcontrib>Menezes, Prashanth W.</creatorcontrib><title>Oxygen Evolution Activity of Amorphous Cobalt Oxyhydroxides: Interconnecting Precatalyst Reconstruction, Long‐Range Order, Buffer‐Binding, Morphology, Mass Transport, and Operation Temperature</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Nanocrystalline or amorphous cobalt oxyhydroxides (CoCat) are promising electrocatalysts for the oxygen evolution reaction (OER). While having the same short‐range order, CoCat phases possess different electrocatalytic properties. This phenomenon is not conclusively understood, as multiple interdependent parameters affect the OER activity simultaneously. Herein, a layered cobalt borophosphate precatalyst, Co(H2O)2[B2P2O8(OH)2]·H2O, is fully reconstructed into two different CoCat phases. In contrast to previous reports, this reconstruction is not initiated at the surface but at the electrode substrate to catalyst interface. Ex situ and in situ investigations of the two borophosphate derived CoCats, as well as the prominent CoPi and CoBi identify differences in the Tafel slope/range, buffer binding and content, long‐range order, number of accessible edge sites, redox activity, and morphology. Considering and interconnecting these aspects together with proton mass‐transport limitations, a comprehensive picture is provided explaining the different OER activities. The most decisive factors are the buffers used for reconstruction, the number of edge sites that are not inhibited by irreversibly bonded buffers, and the morphology. With this acquired knowledge, an optimized OER system is realized operating in near‐neutral potassium borate medium at 1.62 ± 0.03 VRHE yielding 250 mA cm−2 at 65 °C for 1 month without degrading performance.
Four different amorphous cobalt oxyhydroxides and two crystalline cobalt oxides are studied in situ to deduce the role of the reconstruction conditions, the effect of the electrolyte, and structure–activity relations for near‐neutral water oxidation. Multiple aspects are considered and interconnected, deducing a comprehensive concept for the different electrocatalytic performances, including mass transport.</description><subject>(near‐)neutral oxygen evolution reaction</subject><subject>Binding</subject><subject>Buffers</subject><subject>Cobalt</subject><subject>cobalt borophosphate precatalysts</subject><subject>cobalt oxyhydoxides</subject><subject>edge sites</subject><subject>Electrocatalysts</subject><subject>Knowledge acquisition</subject><subject>Mass transport</subject><subject>Materials science</subject><subject>Morphology</subject><subject>Oxygen evolution reactions</subject><subject>Performance degradation</subject><subject>precatalyst reconstructions</subject><subject>proton transport</subject><subject>Reconstruction</subject><subject>Substrates</subject><subject>water oxidation</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkcFu1DAQhi0EokvhyhFZ4sJhs9iOk9jc0qVApa0WVcs5cmwnTZXYwXZKc-MReCiehCfBu1uKxIWTZ-xv_hnPD8BLjFYYIfJWqEGsCCIEFZTTR2CBM4ITinj2GCwQT7OE55SdgGfe3yCEeI7yp-AkzTHjrEgX4Of2bm61gee3tp9CZw0sZehuuzBD28BysG68tpOHa1uLPsBIX8_K2btOaf8OXpignbTG6FhkWvjZaSmC6Gcf4JWODz64Se5ll3BjTfvr-48rYVoNt05pt4RnU9NoF2_POqOiwBJeHhr2tp1jLLyHOyeMH60LSyiMgttRO3GYc6eHQzw5_Rw8aUTv9Yv78xR8-XC-W39KNtuPF-tyk8iUpjSJH2Y8zRFpGGNEqpjUBS5oTAhulEwVyxqEM5khzkVBEUprgVldMKY5rov0FLw56o7Ofp20D9XQean7Xhgdl1SRgsSVE0xoRF__g97YyZk4XaQyyuIkHEdqdaSks9473VSj6wbh5gqjau9vtfe3evA3Fry6l53qQasH_I-hEeBH4FvX6_k_clX5_rL8K_4bkk-2kw</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Hausmann, J. Niklas</creator><creator>Mebs, Stefan</creator><creator>Dau, Holger</creator><creator>Driess, Matthias</creator><creator>Menezes, Prashanth W.</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2336-3600</orcidid><orcidid>https://orcid.org/0000-0002-9873-4103</orcidid></search><sort><creationdate>20221201</creationdate><title>Oxygen Evolution Activity of Amorphous Cobalt Oxyhydroxides: Interconnecting Precatalyst Reconstruction, Long‐Range Order, Buffer‐Binding, Morphology, Mass Transport, and Operation Temperature</title><author>Hausmann, J. Niklas ; Mebs, Stefan ; Dau, Holger ; Driess, Matthias ; Menezes, Prashanth W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3434-873893602f8882cd893b717488221fdc3d85f015c5099a74003ba18b788e91b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>(near‐)neutral oxygen evolution reaction</topic><topic>Binding</topic><topic>Buffers</topic><topic>Cobalt</topic><topic>cobalt borophosphate precatalysts</topic><topic>cobalt oxyhydoxides</topic><topic>edge sites</topic><topic>Electrocatalysts</topic><topic>Knowledge acquisition</topic><topic>Mass transport</topic><topic>Materials science</topic><topic>Morphology</topic><topic>Oxygen evolution reactions</topic><topic>Performance degradation</topic><topic>precatalyst reconstructions</topic><topic>proton transport</topic><topic>Reconstruction</topic><topic>Substrates</topic><topic>water oxidation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hausmann, J. Niklas</creatorcontrib><creatorcontrib>Mebs, Stefan</creatorcontrib><creatorcontrib>Dau, Holger</creatorcontrib><creatorcontrib>Driess, Matthias</creatorcontrib><creatorcontrib>Menezes, Prashanth W.</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hausmann, J. Niklas</au><au>Mebs, Stefan</au><au>Dau, Holger</au><au>Driess, Matthias</au><au>Menezes, Prashanth W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oxygen Evolution Activity of Amorphous Cobalt Oxyhydroxides: Interconnecting Precatalyst Reconstruction, Long‐Range Order, Buffer‐Binding, Morphology, Mass Transport, and Operation Temperature</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2022-12-01</date><risdate>2022</risdate><volume>34</volume><issue>50</issue><spage>e2207494</spage><epage>n/a</epage><pages>e2207494-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Nanocrystalline or amorphous cobalt oxyhydroxides (CoCat) are promising electrocatalysts for the oxygen evolution reaction (OER). While having the same short‐range order, CoCat phases possess different electrocatalytic properties. This phenomenon is not conclusively understood, as multiple interdependent parameters affect the OER activity simultaneously. Herein, a layered cobalt borophosphate precatalyst, Co(H2O)2[B2P2O8(OH)2]·H2O, is fully reconstructed into two different CoCat phases. In contrast to previous reports, this reconstruction is not initiated at the surface but at the electrode substrate to catalyst interface. Ex situ and in situ investigations of the two borophosphate derived CoCats, as well as the prominent CoPi and CoBi identify differences in the Tafel slope/range, buffer binding and content, long‐range order, number of accessible edge sites, redox activity, and morphology. Considering and interconnecting these aspects together with proton mass‐transport limitations, a comprehensive picture is provided explaining the different OER activities. The most decisive factors are the buffers used for reconstruction, the number of edge sites that are not inhibited by irreversibly bonded buffers, and the morphology. With this acquired knowledge, an optimized OER system is realized operating in near‐neutral potassium borate medium at 1.62 ± 0.03 VRHE yielding 250 mA cm−2 at 65 °C for 1 month without degrading performance.
Four different amorphous cobalt oxyhydroxides and two crystalline cobalt oxides are studied in situ to deduce the role of the reconstruction conditions, the effect of the electrolyte, and structure–activity relations for near‐neutral water oxidation. Multiple aspects are considered and interconnected, deducing a comprehensive concept for the different electrocatalytic performances, including mass transport.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>36189873</pmid><doi>10.1002/adma.202207494</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-2336-3600</orcidid><orcidid>https://orcid.org/0000-0002-9873-4103</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-9648 |
ispartof | Advanced materials (Weinheim), 2022-12, Vol.34 (50), p.e2207494-n/a |
issn | 0935-9648 1521-4095 |
language | eng |
recordid | cdi_proquest_miscellaneous_2720932124 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | (near‐)neutral oxygen evolution reaction Binding Buffers Cobalt cobalt borophosphate precatalysts cobalt oxyhydoxides edge sites Electrocatalysts Knowledge acquisition Mass transport Materials science Morphology Oxygen evolution reactions Performance degradation precatalyst reconstructions proton transport Reconstruction Substrates water oxidation |
title | Oxygen Evolution Activity of Amorphous Cobalt Oxyhydroxides: Interconnecting Precatalyst Reconstruction, Long‐Range Order, Buffer‐Binding, Morphology, Mass Transport, and Operation Temperature |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T22%3A16%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oxygen%20Evolution%20Activity%20of%20Amorphous%20Cobalt%20Oxyhydroxides:%20Interconnecting%20Precatalyst%20Reconstruction,%20Long%E2%80%90Range%20Order,%20Buffer%E2%80%90Binding,%20Morphology,%20Mass%20Transport,%20and%20Operation%20Temperature&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Hausmann,%20J.%20Niklas&rft.date=2022-12-01&rft.volume=34&rft.issue=50&rft.spage=e2207494&rft.epage=n/a&rft.pages=e2207494-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202207494&rft_dat=%3Cproquest_cross%3E2754838991%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2754838991&rft_id=info:pmid/36189873&rfr_iscdi=true |