Oxygen Evolution Activity of Amorphous Cobalt Oxyhydroxides: Interconnecting Precatalyst Reconstruction, Long‐Range Order, Buffer‐Binding, Morphology, Mass Transport, and Operation Temperature

Nanocrystalline or amorphous cobalt oxyhydroxides (CoCat) are promising electrocatalysts for the oxygen evolution reaction (OER). While having the same short‐range order, CoCat phases possess different electrocatalytic properties. This phenomenon is not conclusively understood, as multiple interdepe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2022-12, Vol.34 (50), p.e2207494-n/a
Hauptverfasser: Hausmann, J. Niklas, Mebs, Stefan, Dau, Holger, Driess, Matthias, Menezes, Prashanth W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 50
container_start_page e2207494
container_title Advanced materials (Weinheim)
container_volume 34
creator Hausmann, J. Niklas
Mebs, Stefan
Dau, Holger
Driess, Matthias
Menezes, Prashanth W.
description Nanocrystalline or amorphous cobalt oxyhydroxides (CoCat) are promising electrocatalysts for the oxygen evolution reaction (OER). While having the same short‐range order, CoCat phases possess different electrocatalytic properties. This phenomenon is not conclusively understood, as multiple interdependent parameters affect the OER activity simultaneously. Herein, a layered cobalt borophosphate precatalyst, Co(H2O)2[B2P2O8(OH)2]·H2O, is fully reconstructed into two different CoCat phases. In contrast to previous reports, this reconstruction is not initiated at the surface but at the electrode substrate to catalyst interface. Ex situ and in situ investigations of the two borophosphate derived CoCats, as well as the prominent CoPi and CoBi identify differences in the Tafel slope/range, buffer binding and content, long‐range order, number of accessible edge sites, redox activity, and morphology. Considering and interconnecting these aspects together with proton mass‐transport limitations, a comprehensive picture is provided explaining the different OER activities. The most decisive factors are the buffers used for reconstruction, the number of edge sites that are not inhibited by irreversibly bonded buffers, and the morphology. With this acquired knowledge, an optimized OER system is realized operating in near‐neutral potassium borate medium at 1.62 ± 0.03 VRHE yielding 250 mA cm−2 at 65 °C for 1 month without degrading performance. Four different amorphous cobalt oxyhydroxides and two crystalline cobalt oxides are studied in situ to deduce the role of the reconstruction conditions, the effect of the electrolyte, and structure–activity relations for near‐neutral water oxidation. Multiple aspects are considered and interconnected, deducing a comprehensive concept for the different electrocatalytic performances, including mass transport.
doi_str_mv 10.1002/adma.202207494
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2720932124</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2754838991</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3434-873893602f8882cd893b717488221fdc3d85f015c5099a74003ba18b788e91b73</originalsourceid><addsrcrecordid>eNqFkcFu1DAQhi0EokvhyhFZ4sJhs9iOk9jc0qVApa0WVcs5cmwnTZXYwXZKc-MReCiehCfBu1uKxIWTZ-xv_hnPD8BLjFYYIfJWqEGsCCIEFZTTR2CBM4ITinj2GCwQT7OE55SdgGfe3yCEeI7yp-AkzTHjrEgX4Of2bm61gee3tp9CZw0sZehuuzBD28BysG68tpOHa1uLPsBIX8_K2btOaf8OXpignbTG6FhkWvjZaSmC6Gcf4JWODz64Se5ll3BjTfvr-48rYVoNt05pt4RnU9NoF2_POqOiwBJeHhr2tp1jLLyHOyeMH60LSyiMgttRO3GYc6eHQzw5_Rw8aUTv9Yv78xR8-XC-W39KNtuPF-tyk8iUpjSJH2Y8zRFpGGNEqpjUBS5oTAhulEwVyxqEM5khzkVBEUprgVldMKY5rov0FLw56o7Ofp20D9XQean7Xhgdl1SRgsSVE0xoRF__g97YyZk4XaQyyuIkHEdqdaSks9473VSj6wbh5gqjau9vtfe3evA3Fry6l53qQasH_I-hEeBH4FvX6_k_clX5_rL8K_4bkk-2kw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2754838991</pqid></control><display><type>article</type><title>Oxygen Evolution Activity of Amorphous Cobalt Oxyhydroxides: Interconnecting Precatalyst Reconstruction, Long‐Range Order, Buffer‐Binding, Morphology, Mass Transport, and Operation Temperature</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Hausmann, J. Niklas ; Mebs, Stefan ; Dau, Holger ; Driess, Matthias ; Menezes, Prashanth W.</creator><creatorcontrib>Hausmann, J. Niklas ; Mebs, Stefan ; Dau, Holger ; Driess, Matthias ; Menezes, Prashanth W.</creatorcontrib><description>Nanocrystalline or amorphous cobalt oxyhydroxides (CoCat) are promising electrocatalysts for the oxygen evolution reaction (OER). While having the same short‐range order, CoCat phases possess different electrocatalytic properties. This phenomenon is not conclusively understood, as multiple interdependent parameters affect the OER activity simultaneously. Herein, a layered cobalt borophosphate precatalyst, Co(H2O)2[B2P2O8(OH)2]·H2O, is fully reconstructed into two different CoCat phases. In contrast to previous reports, this reconstruction is not initiated at the surface but at the electrode substrate to catalyst interface. Ex situ and in situ investigations of the two borophosphate derived CoCats, as well as the prominent CoPi and CoBi identify differences in the Tafel slope/range, buffer binding and content, long‐range order, number of accessible edge sites, redox activity, and morphology. Considering and interconnecting these aspects together with proton mass‐transport limitations, a comprehensive picture is provided explaining the different OER activities. The most decisive factors are the buffers used for reconstruction, the number of edge sites that are not inhibited by irreversibly bonded buffers, and the morphology. With this acquired knowledge, an optimized OER system is realized operating in near‐neutral potassium borate medium at 1.62 ± 0.03 VRHE yielding 250 mA cm−2 at 65 °C for 1 month without degrading performance. Four different amorphous cobalt oxyhydroxides and two crystalline cobalt oxides are studied in situ to deduce the role of the reconstruction conditions, the effect of the electrolyte, and structure–activity relations for near‐neutral water oxidation. Multiple aspects are considered and interconnected, deducing a comprehensive concept for the different electrocatalytic performances, including mass transport.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202207494</identifier><identifier>PMID: 36189873</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>(near‐)neutral oxygen evolution reaction ; Binding ; Buffers ; Cobalt ; cobalt borophosphate precatalysts ; cobalt oxyhydoxides ; edge sites ; Electrocatalysts ; Knowledge acquisition ; Mass transport ; Materials science ; Morphology ; Oxygen evolution reactions ; Performance degradation ; precatalyst reconstructions ; proton transport ; Reconstruction ; Substrates ; water oxidation</subject><ispartof>Advanced materials (Weinheim), 2022-12, Vol.34 (50), p.e2207494-n/a</ispartof><rights>2022 The Authors. Advanced Materials published by Wiley‐VCH GmbH</rights><rights>2022 The Authors. Advanced Materials published by Wiley-VCH GmbH.</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3434-873893602f8882cd893b717488221fdc3d85f015c5099a74003ba18b788e91b73</citedby><cites>FETCH-LOGICAL-c3434-873893602f8882cd893b717488221fdc3d85f015c5099a74003ba18b788e91b73</cites><orcidid>0000-0002-2336-3600 ; 0000-0002-9873-4103</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202207494$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202207494$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1416,27922,27923,45572,45573</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36189873$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hausmann, J. Niklas</creatorcontrib><creatorcontrib>Mebs, Stefan</creatorcontrib><creatorcontrib>Dau, Holger</creatorcontrib><creatorcontrib>Driess, Matthias</creatorcontrib><creatorcontrib>Menezes, Prashanth W.</creatorcontrib><title>Oxygen Evolution Activity of Amorphous Cobalt Oxyhydroxides: Interconnecting Precatalyst Reconstruction, Long‐Range Order, Buffer‐Binding, Morphology, Mass Transport, and Operation Temperature</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Nanocrystalline or amorphous cobalt oxyhydroxides (CoCat) are promising electrocatalysts for the oxygen evolution reaction (OER). While having the same short‐range order, CoCat phases possess different electrocatalytic properties. This phenomenon is not conclusively understood, as multiple interdependent parameters affect the OER activity simultaneously. Herein, a layered cobalt borophosphate precatalyst, Co(H2O)2[B2P2O8(OH)2]·H2O, is fully reconstructed into two different CoCat phases. In contrast to previous reports, this reconstruction is not initiated at the surface but at the electrode substrate to catalyst interface. Ex situ and in situ investigations of the two borophosphate derived CoCats, as well as the prominent CoPi and CoBi identify differences in the Tafel slope/range, buffer binding and content, long‐range order, number of accessible edge sites, redox activity, and morphology. Considering and interconnecting these aspects together with proton mass‐transport limitations, a comprehensive picture is provided explaining the different OER activities. The most decisive factors are the buffers used for reconstruction, the number of edge sites that are not inhibited by irreversibly bonded buffers, and the morphology. With this acquired knowledge, an optimized OER system is realized operating in near‐neutral potassium borate medium at 1.62 ± 0.03 VRHE yielding 250 mA cm−2 at 65 °C for 1 month without degrading performance. Four different amorphous cobalt oxyhydroxides and two crystalline cobalt oxides are studied in situ to deduce the role of the reconstruction conditions, the effect of the electrolyte, and structure–activity relations for near‐neutral water oxidation. Multiple aspects are considered and interconnected, deducing a comprehensive concept for the different electrocatalytic performances, including mass transport.</description><subject>(near‐)neutral oxygen evolution reaction</subject><subject>Binding</subject><subject>Buffers</subject><subject>Cobalt</subject><subject>cobalt borophosphate precatalysts</subject><subject>cobalt oxyhydoxides</subject><subject>edge sites</subject><subject>Electrocatalysts</subject><subject>Knowledge acquisition</subject><subject>Mass transport</subject><subject>Materials science</subject><subject>Morphology</subject><subject>Oxygen evolution reactions</subject><subject>Performance degradation</subject><subject>precatalyst reconstructions</subject><subject>proton transport</subject><subject>Reconstruction</subject><subject>Substrates</subject><subject>water oxidation</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkcFu1DAQhi0EokvhyhFZ4sJhs9iOk9jc0qVApa0WVcs5cmwnTZXYwXZKc-MReCiehCfBu1uKxIWTZ-xv_hnPD8BLjFYYIfJWqEGsCCIEFZTTR2CBM4ITinj2GCwQT7OE55SdgGfe3yCEeI7yp-AkzTHjrEgX4Of2bm61gee3tp9CZw0sZehuuzBD28BysG68tpOHa1uLPsBIX8_K2btOaf8OXpignbTG6FhkWvjZaSmC6Gcf4JWODz64Se5ll3BjTfvr-48rYVoNt05pt4RnU9NoF2_POqOiwBJeHhr2tp1jLLyHOyeMH60LSyiMgttRO3GYc6eHQzw5_Rw8aUTv9Yv78xR8-XC-W39KNtuPF-tyk8iUpjSJH2Y8zRFpGGNEqpjUBS5oTAhulEwVyxqEM5khzkVBEUprgVldMKY5rov0FLw56o7Ofp20D9XQean7Xhgdl1SRgsSVE0xoRF__g97YyZk4XaQyyuIkHEdqdaSks9473VSj6wbh5gqjau9vtfe3evA3Fry6l53qQasH_I-hEeBH4FvX6_k_clX5_rL8K_4bkk-2kw</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Hausmann, J. Niklas</creator><creator>Mebs, Stefan</creator><creator>Dau, Holger</creator><creator>Driess, Matthias</creator><creator>Menezes, Prashanth W.</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2336-3600</orcidid><orcidid>https://orcid.org/0000-0002-9873-4103</orcidid></search><sort><creationdate>20221201</creationdate><title>Oxygen Evolution Activity of Amorphous Cobalt Oxyhydroxides: Interconnecting Precatalyst Reconstruction, Long‐Range Order, Buffer‐Binding, Morphology, Mass Transport, and Operation Temperature</title><author>Hausmann, J. Niklas ; Mebs, Stefan ; Dau, Holger ; Driess, Matthias ; Menezes, Prashanth W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3434-873893602f8882cd893b717488221fdc3d85f015c5099a74003ba18b788e91b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>(near‐)neutral oxygen evolution reaction</topic><topic>Binding</topic><topic>Buffers</topic><topic>Cobalt</topic><topic>cobalt borophosphate precatalysts</topic><topic>cobalt oxyhydoxides</topic><topic>edge sites</topic><topic>Electrocatalysts</topic><topic>Knowledge acquisition</topic><topic>Mass transport</topic><topic>Materials science</topic><topic>Morphology</topic><topic>Oxygen evolution reactions</topic><topic>Performance degradation</topic><topic>precatalyst reconstructions</topic><topic>proton transport</topic><topic>Reconstruction</topic><topic>Substrates</topic><topic>water oxidation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hausmann, J. Niklas</creatorcontrib><creatorcontrib>Mebs, Stefan</creatorcontrib><creatorcontrib>Dau, Holger</creatorcontrib><creatorcontrib>Driess, Matthias</creatorcontrib><creatorcontrib>Menezes, Prashanth W.</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hausmann, J. Niklas</au><au>Mebs, Stefan</au><au>Dau, Holger</au><au>Driess, Matthias</au><au>Menezes, Prashanth W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oxygen Evolution Activity of Amorphous Cobalt Oxyhydroxides: Interconnecting Precatalyst Reconstruction, Long‐Range Order, Buffer‐Binding, Morphology, Mass Transport, and Operation Temperature</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2022-12-01</date><risdate>2022</risdate><volume>34</volume><issue>50</issue><spage>e2207494</spage><epage>n/a</epage><pages>e2207494-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Nanocrystalline or amorphous cobalt oxyhydroxides (CoCat) are promising electrocatalysts for the oxygen evolution reaction (OER). While having the same short‐range order, CoCat phases possess different electrocatalytic properties. This phenomenon is not conclusively understood, as multiple interdependent parameters affect the OER activity simultaneously. Herein, a layered cobalt borophosphate precatalyst, Co(H2O)2[B2P2O8(OH)2]·H2O, is fully reconstructed into two different CoCat phases. In contrast to previous reports, this reconstruction is not initiated at the surface but at the electrode substrate to catalyst interface. Ex situ and in situ investigations of the two borophosphate derived CoCats, as well as the prominent CoPi and CoBi identify differences in the Tafel slope/range, buffer binding and content, long‐range order, number of accessible edge sites, redox activity, and morphology. Considering and interconnecting these aspects together with proton mass‐transport limitations, a comprehensive picture is provided explaining the different OER activities. The most decisive factors are the buffers used for reconstruction, the number of edge sites that are not inhibited by irreversibly bonded buffers, and the morphology. With this acquired knowledge, an optimized OER system is realized operating in near‐neutral potassium borate medium at 1.62 ± 0.03 VRHE yielding 250 mA cm−2 at 65 °C for 1 month without degrading performance. Four different amorphous cobalt oxyhydroxides and two crystalline cobalt oxides are studied in situ to deduce the role of the reconstruction conditions, the effect of the electrolyte, and structure–activity relations for near‐neutral water oxidation. Multiple aspects are considered and interconnected, deducing a comprehensive concept for the different electrocatalytic performances, including mass transport.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>36189873</pmid><doi>10.1002/adma.202207494</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-2336-3600</orcidid><orcidid>https://orcid.org/0000-0002-9873-4103</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2022-12, Vol.34 (50), p.e2207494-n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_proquest_miscellaneous_2720932124
source Wiley Online Library Journals Frontfile Complete
subjects (near‐)neutral oxygen evolution reaction
Binding
Buffers
Cobalt
cobalt borophosphate precatalysts
cobalt oxyhydoxides
edge sites
Electrocatalysts
Knowledge acquisition
Mass transport
Materials science
Morphology
Oxygen evolution reactions
Performance degradation
precatalyst reconstructions
proton transport
Reconstruction
Substrates
water oxidation
title Oxygen Evolution Activity of Amorphous Cobalt Oxyhydroxides: Interconnecting Precatalyst Reconstruction, Long‐Range Order, Buffer‐Binding, Morphology, Mass Transport, and Operation Temperature
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T22%3A16%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oxygen%20Evolution%20Activity%20of%20Amorphous%20Cobalt%20Oxyhydroxides:%20Interconnecting%20Precatalyst%20Reconstruction,%20Long%E2%80%90Range%20Order,%20Buffer%E2%80%90Binding,%20Morphology,%20Mass%20Transport,%20and%20Operation%20Temperature&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Hausmann,%20J.%20Niklas&rft.date=2022-12-01&rft.volume=34&rft.issue=50&rft.spage=e2207494&rft.epage=n/a&rft.pages=e2207494-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202207494&rft_dat=%3Cproquest_cross%3E2754838991%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2754838991&rft_id=info:pmid/36189873&rfr_iscdi=true