Oxygen Evolution Activity of Amorphous Cobalt Oxyhydroxides: Interconnecting Precatalyst Reconstruction, Long‐Range Order, Buffer‐Binding, Morphology, Mass Transport, and Operation Temperature

Nanocrystalline or amorphous cobalt oxyhydroxides (CoCat) are promising electrocatalysts for the oxygen evolution reaction (OER). While having the same short‐range order, CoCat phases possess different electrocatalytic properties. This phenomenon is not conclusively understood, as multiple interdepe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2022-12, Vol.34 (50), p.e2207494-n/a
Hauptverfasser: Hausmann, J. Niklas, Mebs, Stefan, Dau, Holger, Driess, Matthias, Menezes, Prashanth W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nanocrystalline or amorphous cobalt oxyhydroxides (CoCat) are promising electrocatalysts for the oxygen evolution reaction (OER). While having the same short‐range order, CoCat phases possess different electrocatalytic properties. This phenomenon is not conclusively understood, as multiple interdependent parameters affect the OER activity simultaneously. Herein, a layered cobalt borophosphate precatalyst, Co(H2O)2[B2P2O8(OH)2]·H2O, is fully reconstructed into two different CoCat phases. In contrast to previous reports, this reconstruction is not initiated at the surface but at the electrode substrate to catalyst interface. Ex situ and in situ investigations of the two borophosphate derived CoCats, as well as the prominent CoPi and CoBi identify differences in the Tafel slope/range, buffer binding and content, long‐range order, number of accessible edge sites, redox activity, and morphology. Considering and interconnecting these aspects together with proton mass‐transport limitations, a comprehensive picture is provided explaining the different OER activities. The most decisive factors are the buffers used for reconstruction, the number of edge sites that are not inhibited by irreversibly bonded buffers, and the morphology. With this acquired knowledge, an optimized OER system is realized operating in near‐neutral potassium borate medium at 1.62 ± 0.03 VRHE yielding 250 mA cm−2 at 65 °C for 1 month without degrading performance. Four different amorphous cobalt oxyhydroxides and two crystalline cobalt oxides are studied in situ to deduce the role of the reconstruction conditions, the effect of the electrolyte, and structure–activity relations for near‐neutral water oxidation. Multiple aspects are considered and interconnected, deducing a comprehensive concept for the different electrocatalytic performances, including mass transport.
ISSN:0935-9648
1521-4095
DOI:10.1002/adma.202207494