Accuracy of clinical versus oculographic detection of pathological saccadic slowing

Saccadic slowing as a component of supranuclear saccadic gaze palsy is an important diagnostic sign in multiple neurologic conditions, including degenerative, inflammatory, genetic, or ischemic lesions affecting brainstem structures responsible for saccadic generation. Little attention has been give...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the neurological sciences 2022-11, Vol.442, p.120436-120436, Article 120436
Hauptverfasser: Grossman, Scott N, Calix, Rachel, Hudson, Todd, Rizzo, John Ross, Selesnick, Ivan, Frucht, Steven, Galetta, Steven L, Balcer, Laura J, Rucker, Janet C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Saccadic slowing as a component of supranuclear saccadic gaze palsy is an important diagnostic sign in multiple neurologic conditions, including degenerative, inflammatory, genetic, or ischemic lesions affecting brainstem structures responsible for saccadic generation. Little attention has been given to the accuracy with which clinicians correctly identify saccadic slowing. We compared clinician (n = 19) judgements of horizontal and vertical saccade speed on video recordings of saccades (from 9 patients with slow saccades, 3 healthy controls) to objective saccade peak velocity measurements from infrared oculographic recordings. Clinician groups included neurology residents, general neurologists, and fellowship-trained neuro-ophthalmologists. Saccades with normal peak velocities on infrared recordings were correctly identified as normal in 57% (91/171; 171 = 9 videos × 19 clinicians) of clinician decisions; saccades determined to be slow on infrared recordings were correctly identified as slow in 84% (224/266; 266 = 14 videos × 19 clinicians) of clinician decisions. Vertical saccades were correctly identified as slow more often than horizontal saccades (94% versus 74% of decisions). No significant differences were identified between clinician training levels. Reliable differentiation between normal and slow saccades is clinically challenging; clinical performance is most accurate for detection of vertical saccade slowing. Quantitative analysis of saccade peak velocities enhances accurate detection and is likely to be especially useful for detection of mild saccadic slowing.
ISSN:0022-510X
1878-5883
DOI:10.1016/j.jns.2022.120436