Design, development and evaluation of an ergonomically designed dual-use mechanism for robot-assisted cardiovascular intervention

Purpose Robot-assisted cardiovascular intervention has been recently developed, which enables interventionists to avoid x-ray radiation and improve their comfort. However, there are still some challenges in the robotic design, such as the inability of the interventionist to freely perform natural cl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal for computer assisted radiology and surgery 2023-02, Vol.18 (2), p.205-216
Hauptverfasser: Peng, Wenjia, Wang, Zehua, Xie, Hongzhi, Gu, Lixu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Purpose Robot-assisted cardiovascular intervention has been recently developed, which enables interventionists to avoid x-ray radiation and improve their comfort. However, there are still some challenges in the robotic design, such as the inability of the interventionist to freely perform natural clinical techniques and the limited motion travel of the interventional tool. To overcome these challenges, this paper proposes an ergonomically designed dual-use mechanism for cardiovascular intervention (DMCI). Methods DMCI can work as an ergonomic interface or a compact slave robot with unlimited motion travel. Our kinematic analysis of DMCI includes motion decoupling and coupling. Motion decoupling decomposes the translation and rotation from the interventionist’s natural clinical actions at the master side. Motion coupling can calculate the input pulses of motors according to the desired rotation and translation, thus composing the motion of the intervention tool at the slave side. Results Our kinematic analysis of DMCI has been experimentally verified, where the overall mean rotational errors are all less than 1° and translational errors are all less than 1 mm. We also evaluated the performance of the DMCI-based master–slave system, where the overall rotational and translational errors are 0.821 ± 0.753° and 0.608 ± 0.512 mm. Moreover, operators were found to be generally more efficient when using the DMCI-based interface compared to the conventional joystick. Conclusion We have validated our kinematic analysis of DMCI. The master–slave teleoperation experiment demonstrated that operators can freely perform natural clinical techniques through the DMCI-based interface, and the slave robot can replicate the operators’ manipulation at the master side well.
ISSN:1861-6429
1861-6410
1861-6429
DOI:10.1007/s11548-022-02755-4