Vredefort shatter cones revisited

Shatter cones have been described from a number of circular and polygonal structures worldwide, the origin of which has been alternatively ascribed to the impacts of large extraterrestrial projectiles or to catastrophic endogenic processes. Despite their association with enigmatic, catastrophic proc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Geophysical Research 1999-03, Vol.104 (B3), p.4911-4930
Hauptverfasser: Nicolaysen, L. O., Reimold, W. U.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Shatter cones have been described from a number of circular and polygonal structures worldwide, the origin of which has been alternatively ascribed to the impacts of large extraterrestrial projectiles or to catastrophic endogenic processes. Despite their association with enigmatic, catastrophic processes, the nature of shatter cones and the physics involved in their formation have not been comprehensively researched. Results of detailed field and laboratory studies of shatter cones from three areas in the collar of the Vredefort Dome in South Africa are presented. Vredefort shatter cones are directly related to a widely displayed fracture phenomenon, termed “multiply striated joint sets (MSJS)”. MSJs are planar to curviplanar fractures occuring at spacings of < 1 to several millimeters. The joint sets have a fractal character. When a new measurement protocol is used in the field, involving study of all joint surfaces and all steps and striae exposed on these surfaces, new information is gained on the genesis and significance of the MSJS and on their relationship to striated conical fractures. The internal constitution of a rock specimen with MSJS was examined in detail, by documenting the precise geometry of many fractures in a suite of parallel thin sections transecting the specimen. The steps and striae on shatter cone surfaces have the characteristics of displacement fractures (microfaults), along which evidence of melting is observed. Shatter cone and MSJS surfaces are often covered with glassy films; we evaluate whether these fracture phenomena are linked to the formation of pseudotachylitic (friction) melt. Our field and petrographic observations can be interpreted as consistent with the generation of shatter cones/MSJS relatively late in the formation of the Vredefort structure. This scenario contrasts sharply with the widely held view that shatter cones are formed during the early “compression” phase of a shock event that affected horizontal strata.
ISSN:0148-0227
2156-2202
DOI:10.1029/1998JB900068