Microstructure and properties of alumina-SiC nanocomposites prepared from ultrafine powders
Alumina-Silicon Carbide nanocomposites were produced and studied under different aspects: characteristics of the starting materials, processing, microstructure and mechanical properties. The raw materials were two kinds of fine SiC powders (30 and 45 nm) and two Al₂O₃ powders (60 and 140 nm). Differ...
Gespeichert in:
Veröffentlicht in: | Journal of materials science 2002-09, Vol.37 (17), p.3747-3758 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Alumina-Silicon Carbide nanocomposites were produced and studied under different aspects: characteristics of the starting materials, processing, microstructure and mechanical properties. The raw materials were two kinds of fine SiC powders (30 and 45 nm) and two Al₂O₃ powders (60 and 140 nm). Different compositions (amounts of SiC in the range 0.5–5 vol%) were performed and the characteristics of the resulting materials compared. The oxygen enrichment in SiC nanopowder due to specific powder treatments was controlled, in order to optimize powder processing routes. Densification tests of Al₂O₃-SiC powder mixtures were performed both by pressureless sintering and hot pressing route. The addition of SiC reduced the densification rate and favoured a refinement of the matrix. Improvement of mechanical properties over monolithic alumina was obtained in composites with the 45 nm SiC. The study pointed out that the critical factor for the success of these materials is the choice of the raw SiC powders in terms of grain size and state of agglomeration. The addition of this ultrafine SiC strongly affected the microstructural evolution, even at low volumetric fractions. The results do not substantiate any remarkable effect by dispersoids in the tested nanosize range. |
---|---|
ISSN: | 0022-2461 1573-4803 |
DOI: | 10.1023/A:1016577728915 |