Modeling the effects of hole distribution in perforated aluminum sheets I: representative unit cells

A method is presented that incorporates microstructural information into a model of the mechanical behavior of two-phase composite materials. The approach is to determine periodic microstructures that are statistically similar to the actual microstructure of the material under consideration. The uti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of solids and structures 2002-05, Vol.39 (9), p.2517-2532
Hauptverfasser: Jia, S., Raiser, G.F., Povirk, G.L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2532
container_issue 9
container_start_page 2517
container_title International journal of solids and structures
container_volume 39
creator Jia, S.
Raiser, G.F.
Povirk, G.L.
description A method is presented that incorporates microstructural information into a model of the mechanical behavior of two-phase composite materials. The approach is to determine periodic microstructures that are statistically similar to the actual microstructure of the material under consideration. The utility of this method is that computationally tractable finite element simulations can then be carried out on representative unit cells that are directly obtained from microstructural observations. To illustrate this method, mechanical tests are performed on perforated aluminum sheets with various microstructures, and the results are compared to finite element simulations of selected representative unit cells. The simulations agree with the trends observed in the experiments, including measurements of the overall strength and ductility of the sheets. Advantages and limitations of the approach used here are discussed.
doi_str_mv 10.1016/S0020-7683(02)00115-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27197774</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020768302001154</els_id><sourcerecordid>27197774</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-8eda589562d4c183ed64d8dd9c1f657a2b9480f89e95875124b7c7b360db223</originalsourceid><addsrcrecordid>eNqFkD1vFDEURS0UJDYhPwHJDSgUA88ej-2hQSjiI1IQRdJbHvuZNZq1F9sTiX_PbDZKylSvOfdevUPIGwYfGDD58QaAQ6ek7i-AvwdgbOjEC7JhWo0dZ0KekM0j8oqc1voHAEQ_wob4n9njHNNv2rZIMQR0rdIc6DbPSH2srcRpaTEnGhPdYwm52Iae2nnZxbTsaN0irpGrT7TgvmDF1GyLd0iXFBt1OM_1NXkZ7Fzx_OGekZtvX28vf3TXv75fXX657lwvdes0ejvocZDcC8d0j14Kr70fHQtyUJZPo9AQ9IjjoNXAuJiUU1MvwU-c92fk3bF1X_LfBWszu1gP-zZhXqrhio1KKbGCwxF0JddaMJh9iTtb_hkG5mDU3Bs1B10GuLk3ag65tw8Dtjo7h2KTi_Up3EsBvZYr9_nI4frrXcRiqouYHPpYVr3G5_jM0n8OC4tx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27197774</pqid></control><display><type>article</type><title>Modeling the effects of hole distribution in perforated aluminum sheets I: representative unit cells</title><source>Elsevier ScienceDirect Journals</source><creator>Jia, S. ; Raiser, G.F. ; Povirk, G.L.</creator><creatorcontrib>Jia, S. ; Raiser, G.F. ; Povirk, G.L.</creatorcontrib><description>A method is presented that incorporates microstructural information into a model of the mechanical behavior of two-phase composite materials. The approach is to determine periodic microstructures that are statistically similar to the actual microstructure of the material under consideration. The utility of this method is that computationally tractable finite element simulations can then be carried out on representative unit cells that are directly obtained from microstructural observations. To illustrate this method, mechanical tests are performed on perforated aluminum sheets with various microstructures, and the results are compared to finite element simulations of selected representative unit cells. The simulations agree with the trends observed in the experiments, including measurements of the overall strength and ductility of the sheets. Advantages and limitations of the approach used here are discussed.</description><identifier>ISSN: 0020-7683</identifier><identifier>EISSN: 1879-2146</identifier><identifier>DOI: 10.1016/S0020-7683(02)00115-4</identifier><identifier>CODEN: IJSOAD</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Composite ; Ductility ; Exact sciences and technology ; Finite element ; Fracture mechanics (crack, fatigue, damage...) ; Fracture mechanics, fatigue and cracks ; Fundamental areas of phenomenology (including applications) ; Macroscopic behavior ; Mechanical properties ; Microstructure ; Physics ; Solid mechanics ; Spatial distribution ; Strength ; Structural and continuum mechanics ; Unit cell</subject><ispartof>International journal of solids and structures, 2002-05, Vol.39 (9), p.2517-2532</ispartof><rights>2002</rights><rights>2002 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-8eda589562d4c183ed64d8dd9c1f657a2b9480f89e95875124b7c7b360db223</citedby><cites>FETCH-LOGICAL-c368t-8eda589562d4c183ed64d8dd9c1f657a2b9480f89e95875124b7c7b360db223</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0020768302001154$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=13640386$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Jia, S.</creatorcontrib><creatorcontrib>Raiser, G.F.</creatorcontrib><creatorcontrib>Povirk, G.L.</creatorcontrib><title>Modeling the effects of hole distribution in perforated aluminum sheets I: representative unit cells</title><title>International journal of solids and structures</title><description>A method is presented that incorporates microstructural information into a model of the mechanical behavior of two-phase composite materials. The approach is to determine periodic microstructures that are statistically similar to the actual microstructure of the material under consideration. The utility of this method is that computationally tractable finite element simulations can then be carried out on representative unit cells that are directly obtained from microstructural observations. To illustrate this method, mechanical tests are performed on perforated aluminum sheets with various microstructures, and the results are compared to finite element simulations of selected representative unit cells. The simulations agree with the trends observed in the experiments, including measurements of the overall strength and ductility of the sheets. Advantages and limitations of the approach used here are discussed.</description><subject>Composite</subject><subject>Ductility</subject><subject>Exact sciences and technology</subject><subject>Finite element</subject><subject>Fracture mechanics (crack, fatigue, damage...)</subject><subject>Fracture mechanics, fatigue and cracks</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Macroscopic behavior</subject><subject>Mechanical properties</subject><subject>Microstructure</subject><subject>Physics</subject><subject>Solid mechanics</subject><subject>Spatial distribution</subject><subject>Strength</subject><subject>Structural and continuum mechanics</subject><subject>Unit cell</subject><issn>0020-7683</issn><issn>1879-2146</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNqFkD1vFDEURS0UJDYhPwHJDSgUA88ej-2hQSjiI1IQRdJbHvuZNZq1F9sTiX_PbDZKylSvOfdevUPIGwYfGDD58QaAQ6ek7i-AvwdgbOjEC7JhWo0dZ0KekM0j8oqc1voHAEQ_wob4n9njHNNv2rZIMQR0rdIc6DbPSH2srcRpaTEnGhPdYwm52Iae2nnZxbTsaN0irpGrT7TgvmDF1GyLd0iXFBt1OM_1NXkZ7Fzx_OGekZtvX28vf3TXv75fXX657lwvdes0ejvocZDcC8d0j14Kr70fHQtyUJZPo9AQ9IjjoNXAuJiUU1MvwU-c92fk3bF1X_LfBWszu1gP-zZhXqrhio1KKbGCwxF0JddaMJh9iTtb_hkG5mDU3Bs1B10GuLk3ag65tw8Dtjo7h2KTi_Up3EsBvZYr9_nI4frrXcRiqouYHPpYVr3G5_jM0n8OC4tx</recordid><startdate>20020501</startdate><enddate>20020501</enddate><creator>Jia, S.</creator><creator>Raiser, G.F.</creator><creator>Povirk, G.L.</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20020501</creationdate><title>Modeling the effects of hole distribution in perforated aluminum sheets I: representative unit cells</title><author>Jia, S. ; Raiser, G.F. ; Povirk, G.L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-8eda589562d4c183ed64d8dd9c1f657a2b9480f89e95875124b7c7b360db223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Composite</topic><topic>Ductility</topic><topic>Exact sciences and technology</topic><topic>Finite element</topic><topic>Fracture mechanics (crack, fatigue, damage...)</topic><topic>Fracture mechanics, fatigue and cracks</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Macroscopic behavior</topic><topic>Mechanical properties</topic><topic>Microstructure</topic><topic>Physics</topic><topic>Solid mechanics</topic><topic>Spatial distribution</topic><topic>Strength</topic><topic>Structural and continuum mechanics</topic><topic>Unit cell</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jia, S.</creatorcontrib><creatorcontrib>Raiser, G.F.</creatorcontrib><creatorcontrib>Povirk, G.L.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>International journal of solids and structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jia, S.</au><au>Raiser, G.F.</au><au>Povirk, G.L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling the effects of hole distribution in perforated aluminum sheets I: representative unit cells</atitle><jtitle>International journal of solids and structures</jtitle><date>2002-05-01</date><risdate>2002</risdate><volume>39</volume><issue>9</issue><spage>2517</spage><epage>2532</epage><pages>2517-2532</pages><issn>0020-7683</issn><eissn>1879-2146</eissn><coden>IJSOAD</coden><abstract>A method is presented that incorporates microstructural information into a model of the mechanical behavior of two-phase composite materials. The approach is to determine periodic microstructures that are statistically similar to the actual microstructure of the material under consideration. The utility of this method is that computationally tractable finite element simulations can then be carried out on representative unit cells that are directly obtained from microstructural observations. To illustrate this method, mechanical tests are performed on perforated aluminum sheets with various microstructures, and the results are compared to finite element simulations of selected representative unit cells. The simulations agree with the trends observed in the experiments, including measurements of the overall strength and ductility of the sheets. Advantages and limitations of the approach used here are discussed.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/S0020-7683(02)00115-4</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0020-7683
ispartof International journal of solids and structures, 2002-05, Vol.39 (9), p.2517-2532
issn 0020-7683
1879-2146
language eng
recordid cdi_proquest_miscellaneous_27197774
source Elsevier ScienceDirect Journals
subjects Composite
Ductility
Exact sciences and technology
Finite element
Fracture mechanics (crack, fatigue, damage...)
Fracture mechanics, fatigue and cracks
Fundamental areas of phenomenology (including applications)
Macroscopic behavior
Mechanical properties
Microstructure
Physics
Solid mechanics
Spatial distribution
Strength
Structural and continuum mechanics
Unit cell
title Modeling the effects of hole distribution in perforated aluminum sheets I: representative unit cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T13%3A20%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20the%20effects%20of%20hole%20distribution%20in%20perforated%20aluminum%20sheets%20I:%20representative%20unit%20cells&rft.jtitle=International%20journal%20of%20solids%20and%20structures&rft.au=Jia,%20S.&rft.date=2002-05-01&rft.volume=39&rft.issue=9&rft.spage=2517&rft.epage=2532&rft.pages=2517-2532&rft.issn=0020-7683&rft.eissn=1879-2146&rft.coden=IJSOAD&rft_id=info:doi/10.1016/S0020-7683(02)00115-4&rft_dat=%3Cproquest_cross%3E27197774%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27197774&rft_id=info:pmid/&rft_els_id=S0020768302001154&rfr_iscdi=true