Modeling the effects of hole distribution in perforated aluminum sheets I: representative unit cells
A method is presented that incorporates microstructural information into a model of the mechanical behavior of two-phase composite materials. The approach is to determine periodic microstructures that are statistically similar to the actual microstructure of the material under consideration. The uti...
Gespeichert in:
Veröffentlicht in: | International journal of solids and structures 2002-05, Vol.39 (9), p.2517-2532 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2532 |
---|---|
container_issue | 9 |
container_start_page | 2517 |
container_title | International journal of solids and structures |
container_volume | 39 |
creator | Jia, S. Raiser, G.F. Povirk, G.L. |
description | A method is presented that incorporates microstructural information into a model of the mechanical behavior of two-phase composite materials. The approach is to determine periodic microstructures that are statistically similar to the actual microstructure of the material under consideration. The utility of this method is that computationally tractable finite element simulations can then be carried out on representative unit cells that are directly obtained from microstructural observations. To illustrate this method, mechanical tests are performed on perforated aluminum sheets with various microstructures, and the results are compared to finite element simulations of selected representative unit cells. The simulations agree with the trends observed in the experiments, including measurements of the overall strength and ductility of the sheets. Advantages and limitations of the approach used here are discussed. |
doi_str_mv | 10.1016/S0020-7683(02)00115-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27197774</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020768302001154</els_id><sourcerecordid>27197774</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-8eda589562d4c183ed64d8dd9c1f657a2b9480f89e95875124b7c7b360db223</originalsourceid><addsrcrecordid>eNqFkD1vFDEURS0UJDYhPwHJDSgUA88ej-2hQSjiI1IQRdJbHvuZNZq1F9sTiX_PbDZKylSvOfdevUPIGwYfGDD58QaAQ6ek7i-AvwdgbOjEC7JhWo0dZ0KekM0j8oqc1voHAEQ_wob4n9njHNNv2rZIMQR0rdIc6DbPSH2srcRpaTEnGhPdYwm52Iae2nnZxbTsaN0irpGrT7TgvmDF1GyLd0iXFBt1OM_1NXkZ7Fzx_OGekZtvX28vf3TXv75fXX657lwvdes0ejvocZDcC8d0j14Kr70fHQtyUJZPo9AQ9IjjoNXAuJiUU1MvwU-c92fk3bF1X_LfBWszu1gP-zZhXqrhio1KKbGCwxF0JddaMJh9iTtb_hkG5mDU3Bs1B10GuLk3ag65tw8Dtjo7h2KTi_Up3EsBvZYr9_nI4frrXcRiqouYHPpYVr3G5_jM0n8OC4tx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27197774</pqid></control><display><type>article</type><title>Modeling the effects of hole distribution in perforated aluminum sheets I: representative unit cells</title><source>Elsevier ScienceDirect Journals</source><creator>Jia, S. ; Raiser, G.F. ; Povirk, G.L.</creator><creatorcontrib>Jia, S. ; Raiser, G.F. ; Povirk, G.L.</creatorcontrib><description>A method is presented that incorporates microstructural information into a model of the mechanical behavior of two-phase composite materials. The approach is to determine periodic microstructures that are statistically similar to the actual microstructure of the material under consideration. The utility of this method is that computationally tractable finite element simulations can then be carried out on representative unit cells that are directly obtained from microstructural observations. To illustrate this method, mechanical tests are performed on perforated aluminum sheets with various microstructures, and the results are compared to finite element simulations of selected representative unit cells. The simulations agree with the trends observed in the experiments, including measurements of the overall strength and ductility of the sheets. Advantages and limitations of the approach used here are discussed.</description><identifier>ISSN: 0020-7683</identifier><identifier>EISSN: 1879-2146</identifier><identifier>DOI: 10.1016/S0020-7683(02)00115-4</identifier><identifier>CODEN: IJSOAD</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Composite ; Ductility ; Exact sciences and technology ; Finite element ; Fracture mechanics (crack, fatigue, damage...) ; Fracture mechanics, fatigue and cracks ; Fundamental areas of phenomenology (including applications) ; Macroscopic behavior ; Mechanical properties ; Microstructure ; Physics ; Solid mechanics ; Spatial distribution ; Strength ; Structural and continuum mechanics ; Unit cell</subject><ispartof>International journal of solids and structures, 2002-05, Vol.39 (9), p.2517-2532</ispartof><rights>2002</rights><rights>2002 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-8eda589562d4c183ed64d8dd9c1f657a2b9480f89e95875124b7c7b360db223</citedby><cites>FETCH-LOGICAL-c368t-8eda589562d4c183ed64d8dd9c1f657a2b9480f89e95875124b7c7b360db223</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0020768302001154$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=13640386$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Jia, S.</creatorcontrib><creatorcontrib>Raiser, G.F.</creatorcontrib><creatorcontrib>Povirk, G.L.</creatorcontrib><title>Modeling the effects of hole distribution in perforated aluminum sheets I: representative unit cells</title><title>International journal of solids and structures</title><description>A method is presented that incorporates microstructural information into a model of the mechanical behavior of two-phase composite materials. The approach is to determine periodic microstructures that are statistically similar to the actual microstructure of the material under consideration. The utility of this method is that computationally tractable finite element simulations can then be carried out on representative unit cells that are directly obtained from microstructural observations. To illustrate this method, mechanical tests are performed on perforated aluminum sheets with various microstructures, and the results are compared to finite element simulations of selected representative unit cells. The simulations agree with the trends observed in the experiments, including measurements of the overall strength and ductility of the sheets. Advantages and limitations of the approach used here are discussed.</description><subject>Composite</subject><subject>Ductility</subject><subject>Exact sciences and technology</subject><subject>Finite element</subject><subject>Fracture mechanics (crack, fatigue, damage...)</subject><subject>Fracture mechanics, fatigue and cracks</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Macroscopic behavior</subject><subject>Mechanical properties</subject><subject>Microstructure</subject><subject>Physics</subject><subject>Solid mechanics</subject><subject>Spatial distribution</subject><subject>Strength</subject><subject>Structural and continuum mechanics</subject><subject>Unit cell</subject><issn>0020-7683</issn><issn>1879-2146</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNqFkD1vFDEURS0UJDYhPwHJDSgUA88ej-2hQSjiI1IQRdJbHvuZNZq1F9sTiX_PbDZKylSvOfdevUPIGwYfGDD58QaAQ6ek7i-AvwdgbOjEC7JhWo0dZ0KekM0j8oqc1voHAEQ_wob4n9njHNNv2rZIMQR0rdIc6DbPSH2srcRpaTEnGhPdYwm52Iae2nnZxbTsaN0irpGrT7TgvmDF1GyLd0iXFBt1OM_1NXkZ7Fzx_OGekZtvX28vf3TXv75fXX657lwvdes0ejvocZDcC8d0j14Kr70fHQtyUJZPo9AQ9IjjoNXAuJiUU1MvwU-c92fk3bF1X_LfBWszu1gP-zZhXqrhio1KKbGCwxF0JddaMJh9iTtb_hkG5mDU3Bs1B10GuLk3ag65tw8Dtjo7h2KTi_Up3EsBvZYr9_nI4frrXcRiqouYHPpYVr3G5_jM0n8OC4tx</recordid><startdate>20020501</startdate><enddate>20020501</enddate><creator>Jia, S.</creator><creator>Raiser, G.F.</creator><creator>Povirk, G.L.</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20020501</creationdate><title>Modeling the effects of hole distribution in perforated aluminum sheets I: representative unit cells</title><author>Jia, S. ; Raiser, G.F. ; Povirk, G.L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-8eda589562d4c183ed64d8dd9c1f657a2b9480f89e95875124b7c7b360db223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Composite</topic><topic>Ductility</topic><topic>Exact sciences and technology</topic><topic>Finite element</topic><topic>Fracture mechanics (crack, fatigue, damage...)</topic><topic>Fracture mechanics, fatigue and cracks</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Macroscopic behavior</topic><topic>Mechanical properties</topic><topic>Microstructure</topic><topic>Physics</topic><topic>Solid mechanics</topic><topic>Spatial distribution</topic><topic>Strength</topic><topic>Structural and continuum mechanics</topic><topic>Unit cell</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jia, S.</creatorcontrib><creatorcontrib>Raiser, G.F.</creatorcontrib><creatorcontrib>Povirk, G.L.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>International journal of solids and structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jia, S.</au><au>Raiser, G.F.</au><au>Povirk, G.L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling the effects of hole distribution in perforated aluminum sheets I: representative unit cells</atitle><jtitle>International journal of solids and structures</jtitle><date>2002-05-01</date><risdate>2002</risdate><volume>39</volume><issue>9</issue><spage>2517</spage><epage>2532</epage><pages>2517-2532</pages><issn>0020-7683</issn><eissn>1879-2146</eissn><coden>IJSOAD</coden><abstract>A method is presented that incorporates microstructural information into a model of the mechanical behavior of two-phase composite materials. The approach is to determine periodic microstructures that are statistically similar to the actual microstructure of the material under consideration. The utility of this method is that computationally tractable finite element simulations can then be carried out on representative unit cells that are directly obtained from microstructural observations. To illustrate this method, mechanical tests are performed on perforated aluminum sheets with various microstructures, and the results are compared to finite element simulations of selected representative unit cells. The simulations agree with the trends observed in the experiments, including measurements of the overall strength and ductility of the sheets. Advantages and limitations of the approach used here are discussed.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/S0020-7683(02)00115-4</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-7683 |
ispartof | International journal of solids and structures, 2002-05, Vol.39 (9), p.2517-2532 |
issn | 0020-7683 1879-2146 |
language | eng |
recordid | cdi_proquest_miscellaneous_27197774 |
source | Elsevier ScienceDirect Journals |
subjects | Composite Ductility Exact sciences and technology Finite element Fracture mechanics (crack, fatigue, damage...) Fracture mechanics, fatigue and cracks Fundamental areas of phenomenology (including applications) Macroscopic behavior Mechanical properties Microstructure Physics Solid mechanics Spatial distribution Strength Structural and continuum mechanics Unit cell |
title | Modeling the effects of hole distribution in perforated aluminum sheets I: representative unit cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T13%3A20%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20the%20effects%20of%20hole%20distribution%20in%20perforated%20aluminum%20sheets%20I:%20representative%20unit%20cells&rft.jtitle=International%20journal%20of%20solids%20and%20structures&rft.au=Jia,%20S.&rft.date=2002-05-01&rft.volume=39&rft.issue=9&rft.spage=2517&rft.epage=2532&rft.pages=2517-2532&rft.issn=0020-7683&rft.eissn=1879-2146&rft.coden=IJSOAD&rft_id=info:doi/10.1016/S0020-7683(02)00115-4&rft_dat=%3Cproquest_cross%3E27197774%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27197774&rft_id=info:pmid/&rft_els_id=S0020768302001154&rfr_iscdi=true |