Modeling the effects of hole distribution in perforated aluminum sheets I: representative unit cells

A method is presented that incorporates microstructural information into a model of the mechanical behavior of two-phase composite materials. The approach is to determine periodic microstructures that are statistically similar to the actual microstructure of the material under consideration. The uti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of solids and structures 2002-05, Vol.39 (9), p.2517-2532
Hauptverfasser: Jia, S., Raiser, G.F., Povirk, G.L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A method is presented that incorporates microstructural information into a model of the mechanical behavior of two-phase composite materials. The approach is to determine periodic microstructures that are statistically similar to the actual microstructure of the material under consideration. The utility of this method is that computationally tractable finite element simulations can then be carried out on representative unit cells that are directly obtained from microstructural observations. To illustrate this method, mechanical tests are performed on perforated aluminum sheets with various microstructures, and the results are compared to finite element simulations of selected representative unit cells. The simulations agree with the trends observed in the experiments, including measurements of the overall strength and ductility of the sheets. Advantages and limitations of the approach used here are discussed.
ISSN:0020-7683
1879-2146
DOI:10.1016/S0020-7683(02)00115-4