Exterior minimum-penalty path-following methods in semidefinite programming

A semidefinite programming problem is a mathematical program in which the objective function is linear in the unknowns and the constraint set is defined by a linear matrix inequality. This problem is nonlinear, nondifferentiable but convex. It covers several standard problems, such as linear and qua...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of optimization theory and applications 1999-02, Vol.100 (2), p.327-348
Hauptverfasser: FAN, M. K. H, GONG, Y
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A semidefinite programming problem is a mathematical program in which the objective function is linear in the unknowns and the constraint set is defined by a linear matrix inequality. This problem is nonlinear, nondifferentiable but convex. It covers several standard problems, such as linear and quadratic programming, and has many applications in engineering. In this paper, we introduce the notion of minimal-penalty path, which is defined as the collection of minimizers for a family of convex optimization problems, and propose two methods for solving the problem by following the minimal-penalty path from the exterior of the feasible set. Our first method, which is also a constraint-aggregation method, achieves the solution by solving a sequence of linear programs, but exhibits a zigzagging behavior around the minimal-penalty path. Our second method eliminates the above drawback by following efficiently the minimum-penalty path through the centering and ascending steps. The global convergence of the methods is proved and their performance is illustrated by means of an example.
ISSN:0022-3239
1573-2878
DOI:10.1023/a:1021782202975