2D/2D Inorganic/Organic Hybrid of Lead-Free Cs2AgBiBr6 Double Perovskite/Covalent Triazine Frameworks with Boosted Charge Separation and Efficient CO2 Photoreduction
Heterojunction construction, especially the inorganic/organic hybrids, is regarded as a universal and effective strategy to achieve high-performance photocatalysts. Herein, a 2D/2D inorganic/organic hybrid photocatalyst was constructed by the electrostatic self-assembly of the lead-free double-perov...
Gespeichert in:
Veröffentlicht in: | Inorganic chemistry 2022-10, Vol.61 (40), p.16028-16037 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Heterojunction construction, especially the inorganic/organic hybrids, is regarded as a universal and effective strategy to achieve high-performance photocatalysts. Herein, a 2D/2D inorganic/organic hybrid photocatalyst was constructed by the electrostatic self-assembly of the lead-free double-perovskite of Cs2AgBiBr6 nanosheets (NSs) and covalent triazine framework (CTF) NSs. The resultant Cs2AgBiBr6/CTF-1 (CABB/CTF-1) hybrid possessed a large surface-to-surface contact area, ensuring intimate interfacial interaction and efficient charge transfer/separation. Meanwhile, the periodical pore structure of CTF-1 endowed the CABB/CTF-1 hybrid with enhanced CO2 adsorption/activation capacity. Consequently, the 2D/2D CABB/CTF-1 hybrid exhibited a remarkable photocatalytic performance toward CO2 reduction. Based on the band structure analysis and various characterization techniques, for example, X-ray photoelectron spectra and electron spin resonance, an S-scheme charge transfer mechanism was proposed. This study presents a new protocol for designing 2D/2D inorganic/organic hybrid photocatalytic systems, which hold great potentials in solar fuel applications. |
---|---|
ISSN: | 0020-1669 1520-510X |
DOI: | 10.1021/acs.inorgchem.2c02440 |