Mechanical Relaxation Time Scales in a Zr–Ti–Ni–Cu–Be Bulk Metallic Glass

The relaxation time scales in a commercial-grade Zr41.25Ti13.75Ni10Cu12.5Be22.5 (at.%) bulk metallic glass were examined using transient and dynamic mechanical experiments. The viscoelastic and sub-Tg relaxations were well described by the Kohlrausch–Williams–Watts relaxation function. A large activ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials research 2002-06, Vol.17 (6), p.1254-1257
Hauptverfasser: Suh, Daewoong, Dauskardt, Reinhold H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The relaxation time scales in a commercial-grade Zr41.25Ti13.75Ni10Cu12.5Be22.5 (at.%) bulk metallic glass were examined using transient and dynamic mechanical experiments. The viscoelastic and sub-Tg relaxations were well described by the Kohlrausch–Williams–Watts relaxation function. A large activation energy (4.0 eV) and small nonexponentiality parameter (approximately 0.5) were observed for viscoelastic relaxation above Tg consistent with the cooperative nature of atomic movements leading ultimately to viscous flow. Conversely, a small activation energy (0.1 eV) and large nonexponentiality parameter (approximately 0.9) were observed for the sub-Tg relaxation suggesting localized atomic adjustments which may involve different structural units or mechanisms. The glass transition was manifested as a decoupling of the sub-Tg and viscoelastic relaxation. The resulting transition temperature determined at a selected time scale was in agreement with the value obtained from calorimetric studies.
ISSN:0884-2914
2044-5326
DOI:10.1557/JMR.2002.0188