Yield precursor in primary creep of colloidal gels
Colloidal gels under constant moderate stress flow only after a prolonged solid-like deformation. Predicting the time-dependent yielding of the gels would facilitate control of their mechanical stability and transport, but early detectable signs of such delayed solid-to-fluid transition remain unkno...
Gespeichert in:
Veröffentlicht in: | Soft matter 2022-10, Vol.18 (39), p.7612-762 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Colloidal gels under constant moderate stress flow only after a prolonged solid-like deformation. Predicting the time-dependent yielding of the gels would facilitate control of their mechanical stability and transport, but early detectable signs of such delayed solid-to-fluid transition remain unknown. We show that the shear rate of colloidal gels under constant stress can forecast an eventual yielding during the earliest stage of deformation known as primary creep. The shear rate before failure exhibits a characteristic power-law decrease as a function of time, distinct from the linear viscoelastic response. We model this early-stage behavior as a series of uncorrelated local plastic events that are thermally activated, which illuminates the exponential dependence of the yield time on the applied stress. By revealing underlying viscoplasticity, this precursor to yield in the macroscopic shear rate provides a convenient tool to predict the yielding of a gel well in advance of its actual occurrence.
Colloidal gels under moderate stress show an early precursor to yield detectable at macroscopic length scales. This precursor arises from accumulation of local plastic events. |
---|---|
ISSN: | 1744-683X 1744-6848 |
DOI: | 10.1039/d2sm00884j |