Effect of rapamycin treatment on oocyte in vitro maturation and embryonic development after parthenogenesis in yaks

Autophagy plays an important role in mammalian oocyte maturation and early embryonic development and rapamycin is well known for inducing autophagy. Although previous studies have reported the effects of rapamycin on oocytes in vitro maturation (IVM) in different species, few studies have been repor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theriogenology 2022-11, Vol.193, p.128-135
Hauptverfasser: Zhang, Tongxiang, Wang, Libin, Pan, Yangyang, He, Honghong, Wang, Jinglei, Zhao, Tian, Ding, Tianyi, Wang, Yaying, Zhao, Ling, Han, Xiaohong, Fan, Jiangfeng, Xu, Gengquan, Cui, Yan, Yu, Sijiu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Autophagy plays an important role in mammalian oocyte maturation and early embryonic development and rapamycin is well known for inducing autophagy. Although previous studies have reported the effects of rapamycin on oocytes in vitro maturation (IVM) in different species, few studies have been reported on the role of rapamycin in yak oocytes IVM and embryonic development. Therefore, the objective of this study was to examine the effect of rapamycin treatment on yak oocytes IVM and early embryonic development. Specifically, immature yak oocytes during IVM or parthenogenetic (PA) embryos were treated with different rapamycin concentrations to select an optimal dose. Then evaluated its effect on maturation rates, cleavage, and blastocyst formation rates, mitochondrial membrane potential, ROS levels. Related genes and proteins expression in matured oocytes and blastocysts were also evaluated. The results show that 10 nM rapamycin treatment during IVM significantly improved oocyte maturation rates of oocytes and blastocyst formation rates. Treatment with 10 nM rapamycin reduced ROS level but increased mitochondrial membrane potential. Correspondingly, mRNA and protein expressions of LC3, Beclin-1, and Bcl-2 up-regulated while Bax down-regulated in matured yak COCs. When parthenogenetic embryos were treated with different rapamycin concentrations, 10 nM rapamycin treatment showed higher 8-cell and blastocyst formation rates. Also, CDX2, POU5F1, SOX2, and Nanog levels in blastocysts were upregulated. In summary, our findings demonstrate that rapamycin treatment improves oocytes maturation probably by increasing mitochondrial membrane potential, reducing ROS levels, and regulating the apoptosis in mature yak oocytes. Rapamycin treatment also improves embryonic developmental competence in the yak. •Autophagy plays an important role in yak oocyte maturation and early embryonic development.
ISSN:0093-691X
1879-3231
DOI:10.1016/j.theriogenology.2022.09.017