A high-quality global gravity field model from CHAMP GPS tracking data and accelerometry (EIGEN-1S)

Using three months of GPS satellite‐to‐satellite tracking and accelerometer data of the CHAMP satellite mission, a new long‐wavelength global gravity field model, called EIGEN‐1S, has been prepared in a joint German‐French effort. The solution is derived solely from analysis of satellite orbit pertu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geophysical research letters 2002-07, Vol.29 (14), p.37-1-37-4
Hauptverfasser: Reigber, Christoph, Balmino, Georges, Schwintzer, Peter, Biancale, Richard, Bode, Albert, Lemoine, Jean-Michel, König, Rolf, Loyer, Sylvain, Neumayer, Hans, Marty, Jean-Charles, Barthelmes, Franz, Perosanz, Felix, Zhu, Shen Yuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Using three months of GPS satellite‐to‐satellite tracking and accelerometer data of the CHAMP satellite mission, a new long‐wavelength global gravity field model, called EIGEN‐1S, has been prepared in a joint German‐French effort. The solution is derived solely from analysis of satellite orbit perturbations, i.e. independent of oceanic and continental surface gravity data. EIGEN‐1S results in a geoid with an approximation error of about 20 cm in terms of 5 × 5 degree block mean values, which is an improvement of more than a factor of 2 compared to pre‐CHAMP satellite‐only gravity field models. This impressive progress is a result of CHAMP's tailored orbit characteristics and dedicated instrumentation, providing continuous tracking and direct on‐orbit measurements of non‐gravitational satellite accelerations.
ISSN:0094-8276
1944-8007
DOI:10.1029/2002GL015064