Roles, mechanism of action, and potential applications of sulfur-oxidizing bacteria for environmental bioremediation
Sulfur (S) is a crucial component in the environment and living organisms. This work is the first attempt to provide an overview and critical discussion on the roles, mechanisms, and environmental applications of sulfur-oxidizing bacteria (SOB). The findings reveal that key enzymes of SOB embarked o...
Gespeichert in:
Veröffentlicht in: | The Science of the total environment 2022-12, Vol.852, p.158203-158203, Article 158203 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Sulfur (S) is a crucial component in the environment and living organisms. This work is the first attempt to provide an overview and critical discussion on the roles, mechanisms, and environmental applications of sulfur-oxidizing bacteria (SOB). The findings reveal that key enzymes of SOB embarked on oxidation of sulfide, sulfite, thiosulfate, and elemental S. Conversion of reduced S compounds was oxidatively catalyzed by various enzymes (e.g. sulfide: quinone oxidoreductase, flavocytochrome c-sulfide dehydrogenase, dissimilatory sulfite reductase, heterodisulfide reductase-like proteins). Environmental applications of SOB discussed include detoxifying hydrogen sulfide, soil bioremediation, and wastewater treatment. SOB producing S0 engaged in biological S soil amendments (e.g. saline-alkali soil remediation, the oxidation of sulfide-bearing minerals). Biotreatment of H2S using SOB occurred under both aerobic and anaerobic conditions. Sulfide, nitrate, and sulfamethoxazole were removed through SOB suspension cultures and S0-based carriers. Finally, this work presented future perspectives on SOB development, including S0 recovery, SOB enrichment, field measurement and identification of sulfur compounds, and the development of mathematical simulation.
[Display omitted]
•Role, mechanisms, and uses of S-oxidizing bacteria in bioremediation are reviewed.•SOB and their enzymes as potential biocatalysts enhance bioremediation.•SOB applications include H2S detoxification, soil, and wastewater treatment.•Recommendations are S0 recovery, SOB enrichment, field measurement, and modelling. |
---|---|
ISSN: | 0048-9697 1879-1026 |
DOI: | 10.1016/j.scitotenv.2022.158203 |