Meteorological driving forces of reference evapotranspiration and their trends in California

Reference evapotranspiration (ETo) is a variable that helps determine atmospheric pressure on living (reference) grass to release water into the atmosphere. For this purpose, four main driving forces: air temperature, air humidity, solar radiation, and wind speed need to be measured over the well-wa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Science of the total environment 2022-11, Vol.849, p.157823-157823, Article 157823
Hauptverfasser: Ahmadi, Arman, Daccache, Andre, Snyder, Richard L., Suvočarev, Kosana
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Reference evapotranspiration (ETo) is a variable that helps determine atmospheric pressure on living (reference) grass to release water into the atmosphere. For this purpose, four main driving forces: air temperature, air humidity, solar radiation, and wind speed need to be measured over the well-watered reference grass. The relative influence of these driving forces is region and climate-specific, with daily and seasonal variations. A clear understanding of the dynamic interactions of ETo's driving factors can illuminate the water and energy cycles of the earth and assist modelers with more accurate predictions of ETo. In this study, Pearson correlation, mutual information, and random forest feature importance analyses have been used to evaluate the relative importance of meteorological driving forces of ETo in California. To better understand the interrelations of these variables, 1,365,823 daily data samples from 237 standardized weather stations for 36 years have been clustered into homogeneous climatic zones and analyzed. To compensate for the effects of seasonality, feature importance analysis is also conducted on seasonal and monthly clustered data. Moreover, seasonal and annual trends of ETo and its driving factors are investigated for California and homogeneous zones using the Mann-Kendall test. Our findings reveal that for annually clustered data, solar radiation is the most influential driving factor of ETo in California. However, analysis of seasonal and monthly clustered data shows that vapor pressure deficit is the most informative factor during the summer and spring, while solar radiation is more important during the colder seasons. Results of trend analysis don't suggest a consistent monotonic trend for ETo and other variables for different seasons and zones. However, it is shown that agricultural regions with heavy irrigation dependence like the Central Valley are getting warmer and drier, especially during the irrigation season. This can adversely affect the water resources, agriculture industry, and food production of California, and modeling efforts like this can be very informative for future water resources management. [Display omitted] •More than one million daily meteorological samples from 237 weather stations over 36 years in California were analyzed.•Three feature importance analysis methods were used to evaluate the importance of meteorological driving forces of ETo.•Seasonal and annual trends of ETo and its driving factors were
ISSN:0048-9697
1879-1026
DOI:10.1016/j.scitotenv.2022.157823