Commercial organic fertilizer substitution increases wheat yield by improving soil quality

Traditional organic fertilizer substitution is an effective measure for increasing crop yield and soil quality while reducing chemical fertilizer input. However, the effects of commercial organic fertilizer substitution (COFS) on soil quality and wheat yield, and the underlying mechanisms, are unkno...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Science of the total environment 2022-12, Vol.851, p.158132-158132, Article 158132
Hauptverfasser: He, Hao, Peng, Mengwen, Lu, Weidan, Hou, Zhenan, Li, Junhua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Traditional organic fertilizer substitution is an effective measure for increasing crop yield and soil quality while reducing chemical fertilizer input. However, the effects of commercial organic fertilizer substitution (COFS) on soil quality and wheat yield, and the underlying mechanisms, are unknown. In this study, agricultural fields with low fertility (LF) and high (HF) fertility soils were selected for a two-year (2018–2019) field experiment in the oasis region of Northwest China. Three fertilization treatments with three replications (no fertilization, CK; local conventional chemical fertilizer application, LCF; and 20 % of inorganic nitrogen (N) was substituted by commercial organic fertilizer, COFS) were established to study the effects of COFS on wheat growth, yield, nutrient-use efficiency and soil quality. The results showed that compared with LCF in 2018 and 2019, COFS in LF and HF promoted wheat growth, improved nitrogen use efficiency (NUE) and phosphorus use efficiency (PUE), and increased yield (by 1.52 %–3.05 % and 1.16 %–1.39 %) and soil quality (by 15.09 %–28.63 % and 22.53 %–64.82 %) by improving most soil indicators (e.g., soil organic matter (SOM) and available nutrients). Moreover, SOM and available nutrients significantly affect soil quality and wheat yield, which can monitor changes in soil quality and wheat yield. In conclusion, our study revealed that the mechanism of COFS in HF and LF increased wheat yield by improving soil quality. COFS is recommended for agricultural production, but its continuous application requires monitoring changes in SOM and available nutrients to adjust fertilization to guarantee soil quality and crop yield. This study provides guidance for the scientific application of COFS to improve farmland productivity and soil quality and helps to promote healthy and sustainable agricultural development. [Display omitted] •COFS increased yield and improved nitrogen and phosphorus use efficiency.•COFS in low fertility soil performs better in improving wheat yield.•COFS improved most soil indicators to improve soil quality.•Soil organic matter and available nutrients can monitor wheat yield and soil quality.•COFS in two fertility soils increased wheat yield by improving soil quality.
ISSN:0048-9697
1879-1026
DOI:10.1016/j.scitotenv.2022.158132