Potential of low-cost bio-adsorbents to retain amoxicillin in contaminated water

Sewage sludge as agricultural amendment is the main route of human-medicine antibiotics to enter soils. When reaching environmental compartments, these compounds can cause significant risks to human and ecological health. Specifically, the antibiotic amoxicillin (AMX) is highly used in medicine, and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental research 2022-10, Vol.213, p.113621-113621, Article 113621
Hauptverfasser: Cela-Dablanca, Raquel, Barreiro, Ana, López, Lucia Rodríguez, Santás-Miguel, Vanesa, Arias-Estévez, Manuel, Núñez-Delgado, Avelino, Álvarez-Rodríguez, Esperanza, Fernández-Sanjurjo, María J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Sewage sludge as agricultural amendment is the main route of human-medicine antibiotics to enter soils. When reaching environmental compartments, these compounds can cause significant risks to human and ecological health. Specifically, the antibiotic amoxicillin (AMX) is highly used in medicine, and the fact that more than 80% of the total ingested is excreted increases the chances of causing serious environmental and public health problems. As the use of low-cost bio-adsorbents could help to solve these issues, this research focuses on the retention of AMX onto four by-products of the forestry industry (eucalyptus leaf, pine bark, pine needles, and wood ash) and one from food industry (mussel shell). To carry out this study, batch-type tests were performed, where increasing concentrations of the antibiotic (0, 2.5, 5, 10, 20, 30, 40 and 50 μmol L−1) were added to samples of 0.5 g of each bio-adsorbent. Eucalyptus leaf, pine needle and wood ash showed adsorption scores higher than 80%, while it was up to 39% and 48% for pine bark and mussel shell, respectively. For pine bark, wood ash and mussel shell, adsorption data showed good adjustment to the Freundlich and Linear models, while pine needles and eucalyptus leaf did not fit to any model. There was not desorption when the maximum concentration of AMX (50 μmol L−1) was added. Overall, eucalyptus leaf, pine needles and wood ash can be considered good bio-adsorbents with high potential to retain AMX, which has significant implications regarding their eventual use to reduce risks of environmental pollution by this antibiotic. •100% AMX was retained in pine needles, 90% in wood ash, when added at 50 μmol/L.•AMX retention up to 76% in eucalyptus leaves, 48% in mussel shell, 29% in pine bark.•No AMX desorption was detected when the highest dose of the antibiotic was added.
ISSN:0013-9351
1096-0953
DOI:10.1016/j.envres.2022.113621