Biocompatible Carboxymethyl Chitosan/GO-Based Sponge to Improve the Efficiency of Hemostasis and Wound Healing

Sponges with highly absorptive properties have been widely used in emergency hemostasis. Graphene oxide (GO) has been extensively investigated in biomedical applications and is a promising candidate for hemostatic sponges. However, GO has been demonstrated to have adverse effects on the human body....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2022-10, Vol.14 (39), p.44799-44808
Hauptverfasser: Xu, Zikai, Zou, Liangyu, Xie, Feng, Zhang, Xi, Ou, Xiaolan, Gao, Guanghui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Sponges with highly absorptive properties have been widely used in emergency hemostasis. Graphene oxide (GO) has been extensively investigated in biomedical applications and is a promising candidate for hemostatic sponges. However, GO has been demonstrated to have adverse effects on the human body. To overcome this problem, a hemostatic sponge based on modified GO and carboxymethyl chitosan (CMCS) is successfully prepared, which has excellent water absorption ability and mechanical strength. Importantly, hemostasis assays showed that the composite sponge exhibited high hemostatic efficiency, and the possible hemostatic mechanism is also discussed in this study. Moreover, the results of in vitro antibacterial tests reveal that the composite sponge also presents strong antimicrobial effects against Staphylococcus aureus and Escherichia coli. Significantly, the composited sponge used as hemostatic dressing can effectively promote cell proliferation, achieving a wound closure rate of 95% on day 12. Such a graphene-based sponge with multiple advantageous features would hold broad prospects in the hemostatic field.
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.2c09309