BACE1 Aptamer-Modified Tetrahedral Framework Nucleic Acid to Treat Alzheimer’s Disease in an APP-PS1 Animal Model
Alzheimer’s disease is a neurodegenerative disease caused by excessive amyloid β protein-induced neurotoxicity. However, drugs targeting amyloid β protein production face many problems, such as the low utilization rate of drugs by cells and the difficulty of drugs in penetrating the blood–brain barr...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2022-10, Vol.14 (39), p.44228-44238 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Alzheimer’s disease is a neurodegenerative disease caused by excessive amyloid β protein-induced neurotoxicity. However, drugs targeting amyloid β protein production face many problems, such as the low utilization rate of drugs by cells and the difficulty of drugs in penetrating the blood–brain barrier. A tetrahedral framework nucleic acid is a new type of nanonucleic acid structure that functions as a therapy and drug carrier. Here, we synthesized a BACE1 aptamer-modified tetrahedral framework nucleic acid and tested its therapeutic effect on Alzheimer’s disease in vitro and in vivo. Our results demonstrated that the tetrahedral framework nucleic acid could be used as a carrier to deliver the BACE1 aptamer to the brain to reduce the production of amyloid β proteins. It also played an antiapoptotic role by reducing the production of reactive oxygen species. Thus, this nanomaterial is a potential drug for Alzheimer’s disease. |
---|---|
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/acsami.2c14626 |