Autotaxin is a potential link between genetic risk factors and immunological disturbances of plasmacytoid dendritic cells in systematic lupus erythematosus
Background The importance of autotaxin, an enzyme that catalyzes lysophospholipid production, has recently been recognized in various diseases, including cancer and autoimmune diseases. Herein, we examined the role of autotaxin in systemic lupus erythematosus (SLE), utilizing data from ImmuNexUT, a...
Gespeichert in:
Veröffentlicht in: | Lupus 2022-11, Vol.31 (13), p.1578-1585 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Background
The importance of autotaxin, an enzyme that catalyzes lysophospholipid production, has recently been recognized in various diseases, including cancer and autoimmune diseases. Herein, we examined the role of autotaxin in systemic lupus erythematosus (SLE), utilizing data from ImmuNexUT, a comprehensive database consisting of transcriptome data and expression quantitative trait locus (eQTL) data of immune cells from patients with immune-mediated disorders.
Methods
Serum autotaxin concentrations in patients with SLE and healthy controls (HCs) were compared. The transcriptome data of patients with SLE and age- and sex-matched HCs were obtained from ImmuNexUT. The expression of ENPP2, the gene encoding autotaxin, was examined in peripheral blood immune cells. Next, weighted gene correlation network analysis (WGCNA) was performed to identify genes with expression patterns similar to ENPP2. The ImmuNexUT eQTL database and public epigenomic databases were used to infer the relationship between autotaxin and pathogenesis of SLE.
Results
Autotaxin levels were elevated in the serum of patients with SLE compared to HCs. Furthermore, the expression of ENPP2 was higher in plasmacytoid dendritic cells (pDCs) than in other immune cell subsets, and its expression was elevated in pDCs of patients with SLE compared to HCs. In WGCNA, ENPP2 belonged to a module that correlated with disease activity. This module was enriched in interferon-associated genes and included genes whose expression was influenced by single-nucleotide polymorphisms associated with SLE, suggesting that it is a key module connecting genetic risk factors of SLE with disease pathogenesis. Analysis utilizing the ImmuNexUT eQTL database and public epigenomic databases suggested that the increased expression of ENPP2 in pDCs from patients with SLE may be caused by increased expression of interferon-associated genes and increased binding of STAT3 complexes to the regulatory region of ENPP2.
Conclusions
Autotaxin may play a critical role in connecting genetic risk factors of SLE to disease pathogenesis in pDCs. |
---|---|
ISSN: | 0961-2033 1477-0962 |
DOI: | 10.1177/09612033221128494 |