Free energy surface of initial cap formation in carbon nanotube growth
Initial cap formation is an important process of carbon nanotube (CNT) growth where a hexagonal carbon network is lifted off from the catalyst surface. In this study, free energy surface (FES) of initial cap formation in the CNT growth is investigated by metadynamics simulation. A two-dimensional co...
Gespeichert in:
Veröffentlicht in: | Nanoscale advances 2021-10, Vol.3 (21), p.6191-6196 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Initial cap formation is an important process of carbon nanotube (CNT) growth where a hexagonal carbon network is lifted off from the catalyst surface. In this study, free energy surface (FES) of initial cap formation in the CNT growth is investigated by metadynamics simulation. A two-dimensional collective variable (CV) space is newly developed to examine the complicated formation process of the cap structure, which consists of the formation of a hexagonal carbon network and lift-off of the network from the catalyst surface. States before and after the lift-off of the carbon network are clearly distinguished in the two-dimensional FES. Therefore, free energy difference before and after the lift-off can be directly derived from the two-dimensional FES. It was revealed that the cap structure is stable at a high temperature due to the entropy effect, while the carbon network covering the catalyst surface is energetically stable. The new insight in this study is achieved owing to metadynamics simulation in conjunction with a newly developed two-dimensional CV space since it is impossible to explore FES for such complicated processes in the framework of conventional molecular dynamics simulation.
Free energy surface of the formation of a carbon nanotube cap is investigated by metadynamics simulation with a two-dimensional collective variable space. |
---|---|
ISSN: | 2516-0230 2516-0230 |
DOI: | 10.1039/d1na00377a |