A HYBRID FINITE SEGMENT/FINITE ELEMENT MODELLING AND EXPERIMENT ON A FLEXIBLE DEPLOYMENT SYSTEM
This paper focuses on the dynamic responses of a flexible deployment system that has a central rigid body and four articulated flexible beams and undergoes locking impact. A hybrid finite segment/finite element model and an experiment are presented for the deploy-ment system. The flexible beam compo...
Gespeichert in:
Veröffentlicht in: | Journal of sound and vibration 2002-12, Vol.258 (5), p.931-949 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper focuses on the dynamic responses of a flexible deployment system that has a central rigid body and four articulated flexible beams and undergoes locking impact. A hybrid finite segment/finite element model and an experiment are presented for the deploy-ment system. The flexible beam components in the system are modelled with the finite segments connected by massless beam elements, wherein the finite segments describe the inertia of the large rotation flexible beam and the massless elastic elements describe the elas-ticity of the flexible beam by taking the advantage of small deformation in the relative co-ordinate system. To model the internal impacts in the articulate joints due to clearances, a continuous contact force model of locking joint is also proposed. The governing differential–algebraic equations of the system are established by the Newton–Euler method with Lagrange multipliers and are solved with the method of generalized co-ordinate partitioning. To accelerate the numerical integration, a “longitudinal constraint” is suggested to alleviate the stiff problem of the dynamic equations. In addition, a physical model of the deployment system is constructed. The deployment is released by the compressed springs in the joints. A position measuring system of linear CCD cameras is used to measure the large displacement of the system. Correlations between the mathematical model and the experiments are also presented. Reasonable results are obtained. |
---|---|
ISSN: | 0022-460X 1095-8568 |
DOI: | 10.1006/jsvi.2002.5135 |