Halo formation in directional solidification

A new model of halo formation in directional solidification is presented. The model describes halo formation in terms of competitive growth between the halo phase and coupled eutectic in liquid with a nominal composition that follows the primary phase liquidus extension with decreasing temperature....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta materialia 2002-06, Vol.50 (11), p.2837-2849
Hauptverfasser: Nave, M.D., Dahle, A.K., StJohn, D.H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2849
container_issue 11
container_start_page 2837
container_title Acta materialia
container_volume 50
creator Nave, M.D.
Dahle, A.K.
StJohn, D.H.
description A new model of halo formation in directional solidification is presented. The model describes halo formation in terms of competitive growth between the halo phase and coupled eutectic in liquid with a nominal composition that follows the primary phase liquidus extension with decreasing temperature. The model distinguishes between the effects of constitutional, capillarity and (where applicable) kinetic undercooling and avoids a number of theoretical inconsistencies associated with previous models. The critical growth rate for halo formation in directionally solidified hypereutectic Al–Si alloys is calculated using the model in conjunction with models of primary phase and coupled eutectic growth from the literature. The calculated result agrees reasonably well with the experimental result of Yilmaz and Elliott (Met. Sci. 18 (1984) 362), given the use of a relatively simple isolated dendrite tip model to calculate the growth undercooling of the halo tip.
doi_str_mv 10.1016/S1359-6454(02)00104-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27168816</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359645402001040</els_id><sourcerecordid>27168816</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-96cc3a8c7eae1d1d30e470fd905168c9dbb1c576b3161546b56a72df36544e1a3</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWKs_QdiLouBqZvO1e5JS1AoFD-o5ZPMBkXRTk1bw37vbrXj0NDPM877DvAidA74FDPzuFQhrSk4ZvcLVNcaAaYkP0ARqQcqKMnLY97_IMTrJ-aOHKkHxBN0sVIiFi2mlNj52he8K45PVw6BCkWPwxjuvd9tTdORUyPZsX6fo_fHhbb4oly9Pz_PZstSE15uy4VoTVWthlQUDhmBLBXamwQx4rRvTtqCZ4C0BDozylnElKuMIZ5RaUGSKLkffdYqfW5s3cuWztiGozsZtlpXofWrgPchGUKeYc7JOrpNfqfQtAcshG7nLRg6PS1zJXTYS97qL_QGVtQouqU77_CcmglDWDNz9yNn-2y9vk8za207bMSNpov_n0g-EnndX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27168816</pqid></control><display><type>article</type><title>Halo formation in directional solidification</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Nave, M.D. ; Dahle, A.K. ; StJohn, D.H.</creator><creatorcontrib>Nave, M.D. ; Dahle, A.K. ; StJohn, D.H.</creatorcontrib><description>A new model of halo formation in directional solidification is presented. The model describes halo formation in terms of competitive growth between the halo phase and coupled eutectic in liquid with a nominal composition that follows the primary phase liquidus extension with decreasing temperature. The model distinguishes between the effects of constitutional, capillarity and (where applicable) kinetic undercooling and avoids a number of theoretical inconsistencies associated with previous models. The critical growth rate for halo formation in directionally solidified hypereutectic Al–Si alloys is calculated using the model in conjunction with models of primary phase and coupled eutectic growth from the literature. The calculated result agrees reasonably well with the experimental result of Yilmaz and Elliott (Met. Sci. 18 (1984) 362), given the use of a relatively simple isolated dendrite tip model to calculate the growth undercooling of the halo tip.</description><identifier>ISSN: 1359-6454</identifier><identifier>EISSN: 1873-2453</identifier><identifier>DOI: 10.1016/S1359-6454(02)00104-0</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Aluminium ; Applied sciences ; Casting ; Cross-disciplinary physics: materials science; rheology ; Exact sciences and technology ; Growth ; Materials science ; Metals. Metallurgy ; Modeling ; Phase diagrams and microstructures developed by solidification and solid-solid phase transformations ; Physics ; Solidification ; Theory</subject><ispartof>Acta materialia, 2002-06, Vol.50 (11), p.2837-2849</ispartof><rights>2002 Acta Materialia Inc</rights><rights>2002 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-96cc3a8c7eae1d1d30e470fd905168c9dbb1c576b3161546b56a72df36544e1a3</citedby><cites>FETCH-LOGICAL-c368t-96cc3a8c7eae1d1d30e470fd905168c9dbb1c576b3161546b56a72df36544e1a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S1359-6454(02)00104-0$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=13734590$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Nave, M.D.</creatorcontrib><creatorcontrib>Dahle, A.K.</creatorcontrib><creatorcontrib>StJohn, D.H.</creatorcontrib><title>Halo formation in directional solidification</title><title>Acta materialia</title><description>A new model of halo formation in directional solidification is presented. The model describes halo formation in terms of competitive growth between the halo phase and coupled eutectic in liquid with a nominal composition that follows the primary phase liquidus extension with decreasing temperature. The model distinguishes between the effects of constitutional, capillarity and (where applicable) kinetic undercooling and avoids a number of theoretical inconsistencies associated with previous models. The critical growth rate for halo formation in directionally solidified hypereutectic Al–Si alloys is calculated using the model in conjunction with models of primary phase and coupled eutectic growth from the literature. The calculated result agrees reasonably well with the experimental result of Yilmaz and Elliott (Met. Sci. 18 (1984) 362), given the use of a relatively simple isolated dendrite tip model to calculate the growth undercooling of the halo tip.</description><subject>Aluminium</subject><subject>Applied sciences</subject><subject>Casting</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Exact sciences and technology</subject><subject>Growth</subject><subject>Materials science</subject><subject>Metals. Metallurgy</subject><subject>Modeling</subject><subject>Phase diagrams and microstructures developed by solidification and solid-solid phase transformations</subject><subject>Physics</subject><subject>Solidification</subject><subject>Theory</subject><issn>1359-6454</issn><issn>1873-2453</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMoWKs_QdiLouBqZvO1e5JS1AoFD-o5ZPMBkXRTk1bw37vbrXj0NDPM877DvAidA74FDPzuFQhrSk4ZvcLVNcaAaYkP0ARqQcqKMnLY97_IMTrJ-aOHKkHxBN0sVIiFi2mlNj52he8K45PVw6BCkWPwxjuvd9tTdORUyPZsX6fo_fHhbb4oly9Pz_PZstSE15uy4VoTVWthlQUDhmBLBXamwQx4rRvTtqCZ4C0BDozylnElKuMIZ5RaUGSKLkffdYqfW5s3cuWztiGozsZtlpXofWrgPchGUKeYc7JOrpNfqfQtAcshG7nLRg6PS1zJXTYS97qL_QGVtQouqU77_CcmglDWDNz9yNn-2y9vk8za207bMSNpov_n0g-EnndX</recordid><startdate>20020628</startdate><enddate>20020628</enddate><creator>Nave, M.D.</creator><creator>Dahle, A.K.</creator><creator>StJohn, D.H.</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20020628</creationdate><title>Halo formation in directional solidification</title><author>Nave, M.D. ; Dahle, A.K. ; StJohn, D.H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-96cc3a8c7eae1d1d30e470fd905168c9dbb1c576b3161546b56a72df36544e1a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Aluminium</topic><topic>Applied sciences</topic><topic>Casting</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Exact sciences and technology</topic><topic>Growth</topic><topic>Materials science</topic><topic>Metals. Metallurgy</topic><topic>Modeling</topic><topic>Phase diagrams and microstructures developed by solidification and solid-solid phase transformations</topic><topic>Physics</topic><topic>Solidification</topic><topic>Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nave, M.D.</creatorcontrib><creatorcontrib>Dahle, A.K.</creatorcontrib><creatorcontrib>StJohn, D.H.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Acta materialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nave, M.D.</au><au>Dahle, A.K.</au><au>StJohn, D.H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Halo formation in directional solidification</atitle><jtitle>Acta materialia</jtitle><date>2002-06-28</date><risdate>2002</risdate><volume>50</volume><issue>11</issue><spage>2837</spage><epage>2849</epage><pages>2837-2849</pages><issn>1359-6454</issn><eissn>1873-2453</eissn><abstract>A new model of halo formation in directional solidification is presented. The model describes halo formation in terms of competitive growth between the halo phase and coupled eutectic in liquid with a nominal composition that follows the primary phase liquidus extension with decreasing temperature. The model distinguishes between the effects of constitutional, capillarity and (where applicable) kinetic undercooling and avoids a number of theoretical inconsistencies associated with previous models. The critical growth rate for halo formation in directionally solidified hypereutectic Al–Si alloys is calculated using the model in conjunction with models of primary phase and coupled eutectic growth from the literature. The calculated result agrees reasonably well with the experimental result of Yilmaz and Elliott (Met. Sci. 18 (1984) 362), given the use of a relatively simple isolated dendrite tip model to calculate the growth undercooling of the halo tip.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/S1359-6454(02)00104-0</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1359-6454
ispartof Acta materialia, 2002-06, Vol.50 (11), p.2837-2849
issn 1359-6454
1873-2453
language eng
recordid cdi_proquest_miscellaneous_27168816
source Elsevier ScienceDirect Journals Complete
subjects Aluminium
Applied sciences
Casting
Cross-disciplinary physics: materials science
rheology
Exact sciences and technology
Growth
Materials science
Metals. Metallurgy
Modeling
Phase diagrams and microstructures developed by solidification and solid-solid phase transformations
Physics
Solidification
Theory
title Halo formation in directional solidification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T18%3A22%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Halo%20formation%20in%20directional%20solidification&rft.jtitle=Acta%20materialia&rft.au=Nave,%20M.D.&rft.date=2002-06-28&rft.volume=50&rft.issue=11&rft.spage=2837&rft.epage=2849&rft.pages=2837-2849&rft.issn=1359-6454&rft.eissn=1873-2453&rft_id=info:doi/10.1016/S1359-6454(02)00104-0&rft_dat=%3Cproquest_cross%3E27168816%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27168816&rft_id=info:pmid/&rft_els_id=S1359645402001040&rfr_iscdi=true