Halo formation in directional solidification
A new model of halo formation in directional solidification is presented. The model describes halo formation in terms of competitive growth between the halo phase and coupled eutectic in liquid with a nominal composition that follows the primary phase liquidus extension with decreasing temperature....
Gespeichert in:
Veröffentlicht in: | Acta materialia 2002-06, Vol.50 (11), p.2837-2849 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2849 |
---|---|
container_issue | 11 |
container_start_page | 2837 |
container_title | Acta materialia |
container_volume | 50 |
creator | Nave, M.D. Dahle, A.K. StJohn, D.H. |
description | A new model of halo formation in directional solidification is presented. The model describes halo formation in terms of competitive growth between the halo phase and coupled eutectic in liquid with a nominal composition that follows the primary phase liquidus extension with decreasing temperature. The model distinguishes between the effects of constitutional, capillarity and (where applicable) kinetic undercooling and avoids a number of theoretical inconsistencies associated with previous models. The critical growth rate for halo formation in directionally solidified hypereutectic Al–Si alloys is calculated using the model in conjunction with models of primary phase and coupled eutectic growth from the literature. The calculated result agrees reasonably well with the experimental result of Yilmaz and Elliott (Met. Sci. 18 (1984) 362), given the use of a relatively simple isolated dendrite tip model to calculate the growth undercooling of the halo tip. |
doi_str_mv | 10.1016/S1359-6454(02)00104-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27168816</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359645402001040</els_id><sourcerecordid>27168816</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-96cc3a8c7eae1d1d30e470fd905168c9dbb1c576b3161546b56a72df36544e1a3</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWKs_QdiLouBqZvO1e5JS1AoFD-o5ZPMBkXRTk1bw37vbrXj0NDPM877DvAidA74FDPzuFQhrSk4ZvcLVNcaAaYkP0ARqQcqKMnLY97_IMTrJ-aOHKkHxBN0sVIiFi2mlNj52he8K45PVw6BCkWPwxjuvd9tTdORUyPZsX6fo_fHhbb4oly9Pz_PZstSE15uy4VoTVWthlQUDhmBLBXamwQx4rRvTtqCZ4C0BDozylnElKuMIZ5RaUGSKLkffdYqfW5s3cuWztiGozsZtlpXofWrgPchGUKeYc7JOrpNfqfQtAcshG7nLRg6PS1zJXTYS97qL_QGVtQouqU77_CcmglDWDNz9yNn-2y9vk8za207bMSNpov_n0g-EnndX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27168816</pqid></control><display><type>article</type><title>Halo formation in directional solidification</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Nave, M.D. ; Dahle, A.K. ; StJohn, D.H.</creator><creatorcontrib>Nave, M.D. ; Dahle, A.K. ; StJohn, D.H.</creatorcontrib><description>A new model of halo formation in directional solidification is presented. The model describes halo formation in terms of competitive growth between the halo phase and coupled eutectic in liquid with a nominal composition that follows the primary phase liquidus extension with decreasing temperature. The model distinguishes between the effects of constitutional, capillarity and (where applicable) kinetic undercooling and avoids a number of theoretical inconsistencies associated with previous models. The critical growth rate for halo formation in directionally solidified hypereutectic Al–Si alloys is calculated using the model in conjunction with models of primary phase and coupled eutectic growth from the literature. The calculated result agrees reasonably well with the experimental result of Yilmaz and Elliott (Met. Sci. 18 (1984) 362), given the use of a relatively simple isolated dendrite tip model to calculate the growth undercooling of the halo tip.</description><identifier>ISSN: 1359-6454</identifier><identifier>EISSN: 1873-2453</identifier><identifier>DOI: 10.1016/S1359-6454(02)00104-0</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Aluminium ; Applied sciences ; Casting ; Cross-disciplinary physics: materials science; rheology ; Exact sciences and technology ; Growth ; Materials science ; Metals. Metallurgy ; Modeling ; Phase diagrams and microstructures developed by solidification and solid-solid phase transformations ; Physics ; Solidification ; Theory</subject><ispartof>Acta materialia, 2002-06, Vol.50 (11), p.2837-2849</ispartof><rights>2002 Acta Materialia Inc</rights><rights>2002 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-96cc3a8c7eae1d1d30e470fd905168c9dbb1c576b3161546b56a72df36544e1a3</citedby><cites>FETCH-LOGICAL-c368t-96cc3a8c7eae1d1d30e470fd905168c9dbb1c576b3161546b56a72df36544e1a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S1359-6454(02)00104-0$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=13734590$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Nave, M.D.</creatorcontrib><creatorcontrib>Dahle, A.K.</creatorcontrib><creatorcontrib>StJohn, D.H.</creatorcontrib><title>Halo formation in directional solidification</title><title>Acta materialia</title><description>A new model of halo formation in directional solidification is presented. The model describes halo formation in terms of competitive growth between the halo phase and coupled eutectic in liquid with a nominal composition that follows the primary phase liquidus extension with decreasing temperature. The model distinguishes between the effects of constitutional, capillarity and (where applicable) kinetic undercooling and avoids a number of theoretical inconsistencies associated with previous models. The critical growth rate for halo formation in directionally solidified hypereutectic Al–Si alloys is calculated using the model in conjunction with models of primary phase and coupled eutectic growth from the literature. The calculated result agrees reasonably well with the experimental result of Yilmaz and Elliott (Met. Sci. 18 (1984) 362), given the use of a relatively simple isolated dendrite tip model to calculate the growth undercooling of the halo tip.</description><subject>Aluminium</subject><subject>Applied sciences</subject><subject>Casting</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Exact sciences and technology</subject><subject>Growth</subject><subject>Materials science</subject><subject>Metals. Metallurgy</subject><subject>Modeling</subject><subject>Phase diagrams and microstructures developed by solidification and solid-solid phase transformations</subject><subject>Physics</subject><subject>Solidification</subject><subject>Theory</subject><issn>1359-6454</issn><issn>1873-2453</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMoWKs_QdiLouBqZvO1e5JS1AoFD-o5ZPMBkXRTk1bw37vbrXj0NDPM877DvAidA74FDPzuFQhrSk4ZvcLVNcaAaYkP0ARqQcqKMnLY97_IMTrJ-aOHKkHxBN0sVIiFi2mlNj52he8K45PVw6BCkWPwxjuvd9tTdORUyPZsX6fo_fHhbb4oly9Pz_PZstSE15uy4VoTVWthlQUDhmBLBXamwQx4rRvTtqCZ4C0BDozylnElKuMIZ5RaUGSKLkffdYqfW5s3cuWztiGozsZtlpXofWrgPchGUKeYc7JOrpNfqfQtAcshG7nLRg6PS1zJXTYS97qL_QGVtQouqU77_CcmglDWDNz9yNn-2y9vk8za207bMSNpov_n0g-EnndX</recordid><startdate>20020628</startdate><enddate>20020628</enddate><creator>Nave, M.D.</creator><creator>Dahle, A.K.</creator><creator>StJohn, D.H.</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20020628</creationdate><title>Halo formation in directional solidification</title><author>Nave, M.D. ; Dahle, A.K. ; StJohn, D.H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-96cc3a8c7eae1d1d30e470fd905168c9dbb1c576b3161546b56a72df36544e1a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Aluminium</topic><topic>Applied sciences</topic><topic>Casting</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Exact sciences and technology</topic><topic>Growth</topic><topic>Materials science</topic><topic>Metals. Metallurgy</topic><topic>Modeling</topic><topic>Phase diagrams and microstructures developed by solidification and solid-solid phase transformations</topic><topic>Physics</topic><topic>Solidification</topic><topic>Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nave, M.D.</creatorcontrib><creatorcontrib>Dahle, A.K.</creatorcontrib><creatorcontrib>StJohn, D.H.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Acta materialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nave, M.D.</au><au>Dahle, A.K.</au><au>StJohn, D.H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Halo formation in directional solidification</atitle><jtitle>Acta materialia</jtitle><date>2002-06-28</date><risdate>2002</risdate><volume>50</volume><issue>11</issue><spage>2837</spage><epage>2849</epage><pages>2837-2849</pages><issn>1359-6454</issn><eissn>1873-2453</eissn><abstract>A new model of halo formation in directional solidification is presented. The model describes halo formation in terms of competitive growth between the halo phase and coupled eutectic in liquid with a nominal composition that follows the primary phase liquidus extension with decreasing temperature. The model distinguishes between the effects of constitutional, capillarity and (where applicable) kinetic undercooling and avoids a number of theoretical inconsistencies associated with previous models. The critical growth rate for halo formation in directionally solidified hypereutectic Al–Si alloys is calculated using the model in conjunction with models of primary phase and coupled eutectic growth from the literature. The calculated result agrees reasonably well with the experimental result of Yilmaz and Elliott (Met. Sci. 18 (1984) 362), given the use of a relatively simple isolated dendrite tip model to calculate the growth undercooling of the halo tip.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/S1359-6454(02)00104-0</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1359-6454 |
ispartof | Acta materialia, 2002-06, Vol.50 (11), p.2837-2849 |
issn | 1359-6454 1873-2453 |
language | eng |
recordid | cdi_proquest_miscellaneous_27168816 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Aluminium Applied sciences Casting Cross-disciplinary physics: materials science rheology Exact sciences and technology Growth Materials science Metals. Metallurgy Modeling Phase diagrams and microstructures developed by solidification and solid-solid phase transformations Physics Solidification Theory |
title | Halo formation in directional solidification |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T18%3A22%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Halo%20formation%20in%20directional%20solidification&rft.jtitle=Acta%20materialia&rft.au=Nave,%20M.D.&rft.date=2002-06-28&rft.volume=50&rft.issue=11&rft.spage=2837&rft.epage=2849&rft.pages=2837-2849&rft.issn=1359-6454&rft.eissn=1873-2453&rft_id=info:doi/10.1016/S1359-6454(02)00104-0&rft_dat=%3Cproquest_cross%3E27168816%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27168816&rft_id=info:pmid/&rft_els_id=S1359645402001040&rfr_iscdi=true |