Halo formation in directional solidification

A new model of halo formation in directional solidification is presented. The model describes halo formation in terms of competitive growth between the halo phase and coupled eutectic in liquid with a nominal composition that follows the primary phase liquidus extension with decreasing temperature....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta materialia 2002-06, Vol.50 (11), p.2837-2849
Hauptverfasser: Nave, M.D., Dahle, A.K., StJohn, D.H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A new model of halo formation in directional solidification is presented. The model describes halo formation in terms of competitive growth between the halo phase and coupled eutectic in liquid with a nominal composition that follows the primary phase liquidus extension with decreasing temperature. The model distinguishes between the effects of constitutional, capillarity and (where applicable) kinetic undercooling and avoids a number of theoretical inconsistencies associated with previous models. The critical growth rate for halo formation in directionally solidified hypereutectic Al–Si alloys is calculated using the model in conjunction with models of primary phase and coupled eutectic growth from the literature. The calculated result agrees reasonably well with the experimental result of Yilmaz and Elliott (Met. Sci. 18 (1984) 362), given the use of a relatively simple isolated dendrite tip model to calculate the growth undercooling of the halo tip.
ISSN:1359-6454
1873-2453
DOI:10.1016/S1359-6454(02)00104-0