A hybrid filter/wrapper approach of feature selection using information theory

We focus on a hybrid approach of feature selection. We begin our analysis with a filter model, exploiting the geometrical information contained in the minimum spanning tree (MST) built on the learning set. This model exploits a statistical test of relative certainty gain, used in a forward selection...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pattern recognition 2002-04, Vol.35 (4), p.835-846
Hauptverfasser: Sebban, Marc, Nock, Richard
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We focus on a hybrid approach of feature selection. We begin our analysis with a filter model, exploiting the geometrical information contained in the minimum spanning tree (MST) built on the learning set. This model exploits a statistical test of relative certainty gain, used in a forward selection algorithm. In the second part of the paper, we show that the MST can be replaced by the 1 nearest-neighbor graph without challenging the statistical framework. This leads to a feature selection algorithm belonging to a new category of hybrid models ( filter-wrapper). Experimental results on readily available synthetic and natural domains are presented and discussed.
ISSN:0031-3203
1873-5142
DOI:10.1016/S0031-3203(01)00084-X