Comparative proteomic profiling of Small Extracellular vesicles derived from iPSCs and tissue specific mesenchymal stem cells

Small Extracellular vesicles (EV) are emerging as crucial intercellular messengers that contribute to the physiological processes. EVs contain numerous functional proteins and nucleic acids derived from their parent cells and have different roles depending on their origin. Functionally, EVs transfer...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Experimental cell research 2022-11, Vol.420 (2), p.113354-113354, Article 113354
Hauptverfasser: Gupta, Suchi, Krishnakumar, Vishnu, Soni, Naina, Rao, E Pranshu, Banerjee, Arup, Mohanty, Sujata
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Small Extracellular vesicles (EV) are emerging as crucial intercellular messengers that contribute to the physiological processes. EVs contain numerous functional proteins and nucleic acids derived from their parent cells and have different roles depending on their origin. Functionally, EVs transfer these biological materials from the parent cell to the recipient and thus exhibits a novel therapeutic platform for delivering therapeutics molecules to the target tissue. In this regard, EVs derived from stem cells such as Mesenchymal Stem Cells and iPSCs have demonstrated a higher ability to benefit regenerative medicine. Even though these stem cells share some common properties, due to the differences in their origin (cell sources, the hierarchy of potency, etc) the EVs cargo profiling and functionality may vary. We used iTRAQ-based proteomic analysis to conduct a comprehensive and quantitative evaluation of EVs derived from iPSCs and various tissue-specific MSCs in this study. Additionally, the data was analyzed using a variety of bioinformatic tools, including ProteinPilot for peptide and protein identification and quantification; Funrich, GO, Reactome, and KEGG (Kyoto Encyclopedia of Genes and Genomes) for pathway enrichment; the STRING database, and the inBio Discover tool for identifying known and predicted Protein-Protein networks. Bioinformatics analysis revealed 223 differentially expressed proteins in these EVs; however, Wharton's jelly MSC-EV contained more exclusive proteins with higher protein expression levels. Additionally, 113 proteins were abundant in MSC-EVs, while others were shared between MSC-EVs and iPSC-EVs. Further, based on an in-depth examination of the proteins, their associated pathways, and their interactions with other proteins, it was determined that these proteins are involved in bone regeneration (9.3%), wound healing (4.4%), immune regulation (8.9%), cardiac regeneration (6.6%), neuro regeneration (8.9%), and hepatic regeneration (3.5%). Overall, the results of our proteomic analysis indicate that EVs derived from MSCs have a more robust profile of proteins with higher expression levels than iPSCs. This is a significant finding, as it demonstrates the critical therapeutic role of EVs in a variety of diseases, as demonstrated by enrichment analysis, their versatility, and broad application potential. Comprehensive proteomic profiling of stem cell derived EVs for identifying functional proteins with therapeutic applications. [D
ISSN:0014-4827
1090-2422
DOI:10.1016/j.yexcr.2022.113354