Characteristics of PM2.5 emissions from six types of commercial cooking in Chinese cities and their health effects

Commercial kitchens may pose significant health risks to workers because they generate large quantities of fine particulate matter (PM2.5). In our study, the concentrations and emission rates of PM2.5 in cooking environments were measured for six types of commercial kitchens that used electricity an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental pollution (1987) 2022-11, Vol.313, p.120180-120180, Article 120180
Hauptverfasser: Lyu, Junmeng, Shi, Yongxiang, Chen, Cong, Zhang, Xinqiao, Chu, Wei, Lian, Zhiwei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Commercial kitchens may pose significant health risks to workers because they generate large quantities of fine particulate matter (PM2.5). In our study, the concentrations and emission rates of PM2.5 in cooking environments were measured for six types of commercial kitchens that used electricity and natural gas (including traditional Chinese kitchens, western kitchens, teppanyaki kitchens, fried chicken kitchens, barbecue kitchens, and hotpot cooking area). Furthermore, a preliminary health risk assessment of the chefs was undertaken using the annual PM2.5 inhalation and PM2.5 deposition rates into the upper airways and tracheobronchial and alveolar regions of the human body. Results showed that cooking in the teppanyaki kitchen generated the highest amount of PM2.5, with a mean emission rate of 7.7 mg/min and a mean mass concentration of 850.4 ± 533.4 μg/m³ in the breathing zone. Therefore, teppanyaki kitchens pose highest PM2.5 exposure risks to chefs, with the highest rate of PM2.5 deposition in the upper airways (6.38 × 105 μg/year), followed by Chinese kitchens. The PM2.5 concentrations and emission rates of each kitchen varied greatly with the dishes cooked. The mean PM2.5 concentration was the highest during Chinese stir-frying, with the peak concentration reaching more than 20,000 μg/m3, followed by pan-frying, deep-frying, stewing, and boiling. A rise in PM2.5 concentration was also observed during the start of stir-frying and in the middle to late stages of pan-frying and grilling meat. The results obtained in our study may contribute in understanding the characteristics of PM2.5 emissions from various types of commercial kitchens and their health effects. [Display omitted] •Teppanyaki kitchen has the highest PM2.5 concentration.•Teppanyaki and Chinese kitchens pose highest PM2.5 exposure risks to chefs.•PM2.5 concentrations in breathing zones vary greatly when cooking different dishes.•Start of Chinese stir-frying and middle to end of pan-frying release the most PM2.5
ISSN:0269-7491
1873-6424
DOI:10.1016/j.envpol.2022.120180