Isolation, structure elucidation, and biological activity of polysaccharides from Saussurea involucrata
The optimum extraction condition for the Saussurea involucrata polysaccharide (SIP) was determined to be a temperature of 80 °C, time 2 h, and a liquid-solid ratio of 30 mL/g with a yield of 11.37 %. An acidic homogenous polysaccharide, namely SIP-II was isolated from Saussurea involucrate through a...
Gespeichert in:
Veröffentlicht in: | International journal of biological macromolecules 2022-12, Vol.222, p.154-166 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The optimum extraction condition for the Saussurea involucrata polysaccharide (SIP) was determined to be a temperature of 80 °C, time 2 h, and a liquid-solid ratio of 30 mL/g with a yield of 11.37 %. An acidic homogenous polysaccharide, namely SIP-II was isolated from Saussurea involucrate through anion exchange and gel permeation column chromatography. The structure of the SIP-II was elucidated through the combination of HPLC, GC–MS, IC, peroxide oxidation, smith degradation, methylation, NMR analysis, it was mainly composed of arabinose, rhamnose, galactose, galacturonic acid, and glucose with the molar ratio of 19.85:20.30: 27.12:11.95:8.69 with a molecular weight of 237,570 Da. The glycosidic linkages of SIP-II mainly composed of →1)-α-L-Rhap-(2→, T-Araf, →1)-β-D-GalpA-(4→, →1)-β-D-Galp-(3,6→, →1)-β-D-Galp-(6→, →1)-α-L-Rhap-(2,4→, T-Galp, and →1)-α-L-Araf-(5→. Meanwhile, the structures were characterized through extensive analysis of UV, FT-IR, SEM-EDX, CD, XRD, and TG. SIP-II possessed a remarkable anti-inflammatory activity by effectively inhibiting the expression of pro-inflammatory cytokines and inflammation-related mediators in LPS-stimulated RAW264.7 macrophages, and the anti-inflammatory response of SIP-II might be attributed to the regulation of the NF-κB, MAPK and JAK/STAT pathways. The results showed that polysaccharides from Saussurea involucrate could be a potential ingredient in the functional food and pharmaceutical industry. |
---|---|
ISSN: | 0141-8130 1879-0003 |
DOI: | 10.1016/j.ijbiomac.2022.09.137 |