Biodegradable and Light-Responsive Polymeric Nanoparticles for Environmentally Safe Herbicide Delivery
The low utilization efficiency of pesticides exerts an adverse impact on the environment and human health. Polymer-related controlled-release nanosized pesticide systems provide a promising and efficient way to overcome the problem. In this work, a biodegradable and light-responsive amphiphilic poly...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2022-09, Vol.14 (38), p.43759-43770 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The low utilization efficiency of pesticides exerts an adverse impact on the environment and human health. Polymer-related controlled-release nanosized pesticide systems provide a promising and efficient way to overcome the problem. In this work, a biodegradable and light-responsive amphiphilic polymer was synthesized via 1,1,3,3-tetramethylguanidine-promoted polyesterification under mild conditions (low temperature, no vacuum, and no inert gas protection). We used this polymer to fabricate a light-triggered controlled-release nanosized pesticide system. The herbicide, 2,4-dichlorophenoxyacetic acid (2,4-D), was selected as a model drug to show its potential as a controlled-release pesticide system. It was found that the 2,4-D-loaded polymeric nanoparticles were stable without the treatment of UV, while the release rate of 2,4-D from the nanoparticles gradually increased after treatment with UV light. Pot trial showed that the 2,4-D-loaded polymer nanoparticles showed a good herbicidal effect. Finally, toxicity studies suggested that the polymer can reduce toxicity to nontarget organisms. |
---|---|
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/acsami.2c12106 |