Biodegradable and Light-Responsive Polymeric Nanoparticles for Environmentally Safe Herbicide Delivery

The low utilization efficiency of pesticides exerts an adverse impact on the environment and human health. Polymer-related controlled-release nanosized pesticide systems provide a promising and efficient way to overcome the problem. In this work, a biodegradable and light-responsive amphiphilic poly...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2022-09, Vol.14 (38), p.43759-43770
Hauptverfasser: Shan, Pengfei, Lu, Yingwen, Lu, Weilin, Yin, Xiangping, Liu, Haiwei, Li, Daai, Lian, Xiaoyue, Wang, Weiping, Li, Zhongyu, Li, Zhihui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The low utilization efficiency of pesticides exerts an adverse impact on the environment and human health. Polymer-related controlled-release nanosized pesticide systems provide a promising and efficient way to overcome the problem. In this work, a biodegradable and light-responsive amphiphilic polymer was synthesized via 1,1,3,3-tetramethylguanidine-promoted polyesterification under mild conditions (low temperature, no vacuum, and no inert gas protection). We used this polymer to fabricate a light-triggered controlled-release nanosized pesticide system. The herbicide, 2,4-dichlorophenoxyacetic acid (2,4-D), was selected as a model drug to show its potential as a controlled-release pesticide system. It was found that the 2,4-D-loaded polymeric nanoparticles were stable without the treatment of UV, while the release rate of 2,4-D from the nanoparticles gradually increased after treatment with UV light. Pot trial showed that the 2,4-D-loaded polymer nanoparticles showed a good herbicidal effect. Finally, toxicity studies suggested that the polymer can reduce toxicity to nontarget organisms.
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.2c12106