A-kinase anchoring protein 5-ancored calcineurin regulates the remodeling of H9c2 cardiomyocytes exposed to hypoxia and reoxygenation
A-kinase anchoring protein 5 (AKAP5) is involved in ventricular remodeling in rats with heart failure after myocardial infarction; however, the specific mechanism is not clear. This study investigated whether AKAP5 anchors calcineurin (CaN) to regulate the remodeling of H9c2 cardiomyocytes. H9c2 cel...
Gespeichert in:
Veröffentlicht in: | Biomedicine & pharmacotherapy 2022-11, Vol.155, p.113689-113689, Article 113689 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A-kinase anchoring protein 5 (AKAP5) is involved in ventricular remodeling in rats with heart failure after myocardial infarction; however, the specific mechanism is not clear. This study investigated whether AKAP5 anchors calcineurin (CaN) to regulate the remodeling of H9c2 cardiomyocytes.
H9c2 cells were subjected to hypoxia stress for 3 h and reoxygenation for 24 h to create a hypoxia-reoxygenation (H/R) model. These cells were divided into three groups: H/R (model), empty vector +H/R (NC), and siRNA-AKAP5+H/R (siRNA-AKAP5) groups. The non-H/R H9c2 cells were used as normal controls. Western blotting was used to detect cardiac hypertrophy-related protein expression in the cells, including atrial natriuretic peptide (ANP), B-type natriuretic peptide (BNP), beta myosin heavy chain (β-MHC), and phosphorylated nuclear factor of activated T-cell 3 (p-NFATc3). Phalloidin staining was used to label the cytoskeleton and the cell area in different groups was measured. Immunofluorescence staining and coimmunoprecipitation were used to study the relationship between AKAP5 and CaN. H9c2 cells pretreated with the CaN inhibitor FK506 were used to further verify the relationship between AKAP5 and CaN.
In the siRNA-AKAP5+H/R group, the expression level of cardiac hypertrophy-related proteins (ANP, BNP, and β-MHC) and CaN and the area of cardiomyocytes were significantly increased, while the p-NFATc3/NFATc3 ratio was decreased in H9c2H/R cells. AKAP5 and CaN proteins were colocalized and interacted in the cells. The CaN inhibitor significantly suppressed the expression of CaN, increased the p-NFATc3/NFATc3 ratio, and reduced the expression levels of ANP, BNP, and β-MHC proteins in the cells with low AKAP5 expression.
AKAP5 downregulation aggravated the remodeling of cardiomyocytes after H/R. AKAP5 may anchor CaN to form a complex, which in turn activates NFATc3 dephosphorylation and expression of hypertrophy-related proteins.
[Display omitted]
•AKAP5 downregulation aggravated the remodeling of cardiomyocytes after Hypoxia and Reoxygenation.•AKAP5 anchoring calcineurin to form a complex in H9c2 cardiomyocytes.•The complex activating NFATc3 dephosphorylation and increasing expression of hypertrophy-related proteins. |
---|---|
ISSN: | 0753-3322 1950-6007 |
DOI: | 10.1016/j.biopha.2022.113689 |